COSMIC C Cross Compiler
Add-on for

OSMIC

Software

XGATE

LA OR &

NIC

OSMIC’s C cross compiler for the Freescale XGATE co-processor is part of an enhanced

compiler product line incorporating over ten years of innovative design and development. The

COSMIC C cross compiler is field tested, robust, and reliable. It incorporates many features
tailored specifically for the embedded systems developer. The XGATE Compiler is an add-on to the
standard HCS12X Compiler and is not available as a standalone product.

The C Compiler package includes: an optimizing C cross compiler, relocatable macro-assembler, run-time library source
code, and a multi-pass compiler command driver. All the other standard tools are shared with the HCS12X Compiler utilities.

All COSMIC compilers support non-intrusive C source-level debugging with ZAP for Windows and OSF Motif. COSMIC
Cross developement tools are available for several popular host development systems including PC, SUN SPARC and

HP9000/700 UNIX workstations.

Key Features

Microcontroller Specific Design

ANSI C Implementation
Royalty-Free Library Source Code

Intrinsic functions for special instructions

In-line Assembly
C support for Interrupt Handlers
Motorola Compatible Assembler

Host Independent Relocatable Object Format

Object directly linkable with HCS12X code

Extensions for Embedded Systems
Absolute C and Assembly Listings

First Year of Support Service Included

The COSMIC XGATE C cross compiler is designed
specifically for the Freescale XGATE co-processor. A
special code generator and optimizer targeted
specifically for the XGATE processor eliminates the
overhead and complexity of a more generic compiler.
The C code is direclty compatible with the native code
written for HCS12X applications, including sharing of 10
registers include files.

ANSI C

This implementation conforms with the ANSI and ISO
Standard C specifications. Standard C is upward
compatible with ANSI C but provides additional
reliability features and aids for the embedded systems
developer.

C Runtime Support

C runtime support consists of a subset of the standard
ANSI library, and is provided in C source form with the
binary package so you are free to modify library
routines to match your needs. The basic library set
includes the support functions required by a typical
embedded system application. Support includes :

e Character handling
e Non-local jumps

e String handling

Optimizations

Microcontroller-Specific Design

The COSMIC compiler for the Freescale XGATE family
includes many processor-specific optimizations which
lead to more compact, faster programs. For example:

Page 1



COSMIC C Cross Compiler

Product Description

Freescale XGATE

e The compiler allows you to disable the widening of
integer types in an arithmetic expression whenever
possible. As a result, the compiler will perform
arithmetic operations in character precision if the
types are 8-bit.

e Optimized function calling sequence for functions
with arguments (i.e. the compiler passes the first
argument to a function and the return value in a
register).

e Other optimizations include: branch shortening
logic, jump to jump elimination, constant folding,
elimination of unreachable code, removal of
redundant loads/stores, and switch statement
optimizations.

Extensions to ANSI C

e The compiler creates all its tables dynamically on
the heap, allowing large source files to be compiled.

e Common string manipulation routines are
implemented in assembly language for fast
execution.

Assembler

The COSMIC C compiler includes several extensions to
the ANSI standard designed specifically for embedded
systems programmers. Optional Extensions to the ANSI
Standard include:

o The Compiler defines several intrinsic functions
producing directly the special XGATE instructions
such as CSEM, SSEM, SIF, ...

e You can define in-line assembly using _asm() to
insert assembly instructions directly in your C code
to avoid the overhead of calling assembly language
subroutines.

e You can define C functions as interrupt handlers
using the @interrupt keyword. The Compiler
provides the proper interface setting the R1 register
either as a single argument or as a frame pointer if
several arguments are passed.

e Char, int and long sized bitfields, with the ability to
select bit numbering from right-to-left or left-to-right.

e You can define a C object or C function to have an
absolute address at the C-level, using the
@<address> syntax appended to your data
definition; this is useful for interrupt handlers written
in C and for defining memory mapped I/O.

Additional Compiler Features

The compiler package includes a complete relocatable
macro assembler, caxgate, conforms to the standard
Motorola syntax as described in the document
Assembly Language Input Standard. The assembler for
the XGATE implements all of the instructions and
addressing modes using standard Motorola (MASM)
syntax and directives. The assembler also supports the
following:

e Automatic branch optimization (optional).

e Command line defines and include files.

e Conditional assembly with if and else directives.
e Nested include files.

e Nested macros with multiple arguments.

e Relocatable and constant expression evaluation.
e Produces Assembly listings.

e Cross reference table lists each symbol with its
value, attributes, line number of definition and a list
of functions and line numbers where it is
referenced.

The assembler also passes through line number
information, so that COSMIC’s ZAP debugger can
perform full source-level debug at the assembly
language level.

Startup

e A compile-time option lets you include C source line
number information (as well as the name, type,
address, and storage class of program data) in the
object file format for processing by either ZAP C
source-level debugger, or some other debugging
tool such as an in-circuit emulator (see Debugging
Utilities).

e Initialized static data can be located separately in
Random Access Memory (RAM). Uninitialized data
can be placed in the BSS section. All data variables
can be shared with HCS12X variables.

e Code is generated as a symbolic assembly
language file which is fed to the COSMIC XGATE
assembler.

The XGATE code is executed from the HCS12X ram
and then must be initialized at the application startup.
The XGATE Compiler is provided with an extended
startup file allowing the XGATE code and initialized data
to be copied in ram before entering the main routine.

The XGATE object files are direclty compatible with
HCS12X object files so applications using both HCS12X
and XGATE can be built from a single linker command
file.

Page 2



