~

OSMIC Version 1.5

Software

C-Testlt! User’s Guide
for Freescale HCO8/HCS08

Copyright © COSMIC Software 2007

All Trademarks are the property of their respective owners

/

Table of Contents

Introduction

What is C-TeStIt!cceoiiiiiiiieieeee e 1
C-Testlt! Main features

Chapter 1

Starting C-TestIt!

C-Testlt! Display Description.........ccccceeeeereeienieniesienienienenienne 6

Specifying the Target Processor and the Execution Engine....... 7

Setting up the execution environmentccccecereeeeereeennene 8

Chapter 2

In Application Unit Testing

Creating @ TeSt.....coeeverreereeee e 10

Specifying Input and Output values.........ccceeerererereeereneenen. 13

RUN @ 1St c.vviiiiiiiiccee e
Adding Assertions .
SAVE @ TS ..uviiiieiiieieeeeeee ettt
Create @ TeStOramaccceeeeviieeuieeeieceiie et e 19
Run a Testorama.........

Save a Testorama

Chapter 3

Source Unit Testing

Customizing C-Testlt!cccooeririnininiiieeeeeeee 24
Creating @ Source Test.......cceovrueriririeieieieeeeeeee e 25

Specifying Input and Output values...
Runatest....cccoceenenee. .
AddIng ASSEITIONS.ccuveuveiieieteetieeietieieteieteste e seeseeseeseesseens 31

®

Introduction

What is C-Testlt!

C-Testlt! is a product that allows users to “unit test’ their C code.
“Unit testing” in the case of C is understood as the ability to test a func-
tion with a number of different sets of parameters and then check the
results; this is usually referred to as Black Box Testing. C-TestIt! also
allows users to specify a number of “assertions”; “assertions” are condi-
tional statements that will be checked by C-TestIt! during execution of

the function under test, this is referred to as Gray Box Testing.

C-TestIt! offers a unique approach for unit testing, in that it actually
allows you to test functions in the very body of your own application,
since the tests are done not on the C source but on the actual executable
file that is your application. This is called “In Application Unit Testing”.
This approach guarantees that the function is working in its final envi-
ronment, and it relieves the sometimes tedious steps of having to
recompile and link the tested function with added code that will imple-
ment the test. In the case of C-TestIt!, no code is added to your func-
tion, no compilation or link is necessary, C-TestIt! directly uses your
own application.

C-Testlt! also supports the traditonnal approach of “Source Unit Test-
ing”. In this case the test consists in generating C code that positions the
arguments and more C code that tests the results. This code is then com-

© 2007 COSMIC Sofiware

2

- C-Testit! Main features

piled and linked and executed and C-TestIt! then reports the results of
the tests. In this case, a compiler and linker must be readily available to
the user in order to perform all the steps.

By incorporating these two methods for unit testing C-TestIt! offers the
user a comprehensive testing tool.

C-Testlt! Main features

Introduction

In Application Unit Testing
* The code under test is the exact code you will later put into
your target,

» works directly on the application code: no need to recompile
or re-link

* Test with the same memory model and compiler options as the
real project The real code is tested so all options and parame-
ters of the code are used

+ Test the function at its real location. Since the test is done
using the real application code, functions are thus tested at
their real location thereby relieving the issues of function loca-
tion, bank switching, etc.

Source Unit Testing.
Source code of the function is analyzed, then C source instru-
mented code is generated to accomplish the test. This code is
then compiled, linked and executed.

Can check every function of the project
All functions (compiled in debug mode for “In Application Test-
ing”) can be checked with a single file load.

Gray Box Testing
The user can specify a number of conditional statements that
will be evaluated during function execution.

Defines input parameters and expected results
All parameters of the function under test can be specified using
C expressions.

© 2007 COSMIC Sofiware

C-Testit! Main features

* Defines values for global variables
Global variables can be defined for every test using C expres-
sions.

e Inputs (arguments, globals)
Can be specified as a single value, or as a range or a set of values
thereby allowing the same function to be tested with different
inputs in the same test session.

* Create a suite of tests (a “Testorama™)
to be run together

* Supports simulator and real hardware (BDM, ICE, JTAG or
Emulators)
C-Testlt! offers several variants for executing the code under
test.

* Supports a large number of targets

* Runs interactively or in batch mode
Tests can be run immediately and results visualized graphically,
or they can be run in batch mode with logging of output results.

* Can produce reports for archive

* Can produce additional information such as Code Coverage
and execution timing

© 2007 COSMIC Software Introduction

CHAPTER

1

Starting C-Testlt!

* (C-Testlt! Display Description

» Specifying the Target Processor and the Execution Engine

» Setting up the execution environment

© 2007 COSMIC Sofiware Starting C-Testlt! 5

C-Testlt! Display Description

C-Testlt! Display Description

Once you start C-TestIt! the screen should look like:

Fie Tagel (FreeScde_6312/Samdstion) Run Show Customics Path Windows Abot WebiSte

= sl gs|[@

'

T 7

The main window is composed of:

» The application pane on the left which shows all the components
of the executable file for which tests will be built/run.

* The test window where tests will be displayed, as well as source
files if necessary.

6 Starting C-Testlt! © 2007 COSMIC Sofitware

Specifying the Target Processor and the Execution Engine

Specifying the Target Processor and the Execu-
tion Engine

C-Testlt! supports various targets and execution environments.

So once you have started C-Testlt!, you need to specify for which target
processor and which execution environment you are going to specify
the tests.

Please note that the target specification becomes part of the test defini-
tion, while the execution environment is not; i.e. a test for a specific tar-
get can be used with any execution environment available for that
specific target.

The menu shows what is the current target and environment. In the
above example, the Freescale HC12 is selected and the simulation exe-
cution environment is also selected. To change these selections, use the
menu entry.

You will then get the following dialog that will allow you to make your
own selection:

Select Target

Target:
|FreeSeale_ga12 -

Execution Engine:

| Simulation j
o

Please note that you select a target family and not a specific derivative.
The derivative selection can be made when running the tests and setting
up the execution environment.

You can then select the target family, the screen will look like:

© 2007 COSMIC Sofiware Starting C-Testlt! 7

Setting up the execution environment

Select Target

Target:

|FreeSeale_ga12 -

o

And you can select the execution environment, the screen will look
like:

Select Target

Target:
|Freescale_6a0a -

Execution Engine;

=

Indarts08

Simulation

Setting up the execution environment

For some execution engines it may be necessary to setup the target, for
example it may be necessary to specify which derivative is used, or
which port is used to connect to the execution engine. This is not
always needed but may be necessary for example when the target proc-
essor is changed from one derivative to another.

It is possible to force a setup of the execution environment before run-
ning tests, by checking the Customize->Force Target Setup menu

option.

By default this option is not checked, so it is the user responsibility to
check it if needed.

8 Starting C-Testlt! © 2007 COSMIC Sofiware

CHAPTER

2

In Application Unit
Testing

As explained earlier C-TestIt! can run using an executable file pro-
duced by Cosmic Tools.Tests can be created, saved, loaded and exe-
cuted later, or they can be grouped in a “Testorama”.

We are now going to see how to:

Creating a Test

Specifying Input and Output values
Run a test

Adding Assertions

Save a Test

Create a Testorama

Run a Testorama

Save a Testorama

© 2007 COSMIC Sofiware In Application Unit Testing

Creating a Test

Creating a Test

To create a test, the first step is to load the executable file that contains
the function to be tested. To do so you can use either the menu or the
button bar.

Once you have loaded the selected file the application pane will display
information about the application. You will then be able to list the func-
tion names and the variable names included in your application.

Your screen will look like:

Fle Taget (FreeScale_(41215mustion) Fun Show Custome Path Windows About Weblke

A} & _vel_n_rarmetstruct 1, it ¥)
]

Feratcin 6412

Now to create a test for a specific function, just right click on the func-
tion name in the application pane; this will open a test window with all
the components of the test displayed with their default values.

Your screen will look like:

10 In Application Unit Testing © 2007 COSMIC Sofitware

Creating a Test

Do ok Generaie Resorts

T} oot s,

Femeic sin g1

The test window is composed of three columns. The leftmost one lists
all the objects that are manipulated by the test, the middle one shows
input values when appropriate, and the right most one shows output val-
ues when appropriate. When a test is created all appropriate values are
set to their defaults. “Unchanged” is used to indicate an input value
that is not specified, and “Unchecked” is used to indicate an output
value that needs not be checked for this test.

The leftmost window lists all the objects of the test in the following
order:

* Test Name: this is a name that by default is the same as the func-
tion name under test. The user can edit this by right clicking on it.

¢ The Executable file name used for the test.
¢ The name of the source file that includes the function under test.

¢ The name of the function under test.

© 2007 COSMIC Sofiware In Application Unit Testing

1

Creating a Test

* Then we find the Globals entry. This entry exists if and only if the
function under test uses global variables of the program. This
entry can be expanded to view all the variables used as well as
their components for aggregate variables. Each of these variables
can receive an input value for the test by right clicking the corre-
sponding entry in the middle window, and receive an output value
by right clicking the corresponding entry in the rightmost window.

* This is then followed by the list of arguments to the function if
appropriate. Each argument can receive an input value by right
clicking on the corresponding entry in the middle window.

* The function return value. In the case of a function returning an
aggregate, this entry can be expanded to show all components.
The return value can be tested against a specified output value by
right clicking the corresponding entry in the rightmost window.

e Then one finds the “Assertions”. These are conditional expres-
sions that will be tested during the execution of the function. To
add an assertion simply right click on the Assertions icon or text
in the leftmost window. This will bring up a dialog that is used to
specify assertions.

* After, the Target entry is displayed. This entry allows the user to
specify the Stack value used for the test and the address from
which the function call should be executed.

* The Reports entry allows the user to specify whether reports
should be created and where they should be saved. To modify the
report status simply right click on the Reports entry in the leftmost
window.

* Finally, there is the TimeOut entry. This entry allows the user to
specify a time-out for the execution of a function. This is to cope
with situations where the code being tested does not “end” execu-
tion. The TimeOut value is used to stop a test in such cases. To
modify the TimeOut value simply right click on the correponding
middle window entry.

12 In Application Unit Testing © 2007 COSMIC Sofiware

Specifying Input and Output values

Specifying Input and Output values

To specify an input or an output value, right click on the appropriate
entry. Typing <RETURN> ends the editing, while typing <ESCAPE>
cancels the editing and restores the initial value. Input and output values
can be specified for globals, arguments and function return values as
either simple values or valid C expressions. Additionally, inputs can be
specified as a range of constant values or as a set of constant values. To
specify a range the following notation is used: [<low_wval>,
<high_val>], the test will be run for every value in that range; to
specify a set the following notation is used: {<vall>, <val2>, ...,
<valn>}, the test will be run for every value in the set.

If an output value is specified as a constant or a C expression without
any comparators (i.e. <,>, ...), then it is taken to specify the exact value
of the corresponding object; otherwise it is taken to be a C expression to
be evaluated and the value thus obtained is tested for TRUE or FALSE.

For example, to ensure that the function under test returns a value
greater than zero but less than 5, we could use the following Output
Expression:

func() > 0 && func() < 5

Once the inputs and outputs have been specified the screen will look
like:

© 2007 COSMIC Sofiware In Application Unit Testing 13

Specifying Input and Output values

14 In Application Unit Testing

Fie Run thow Path Windows About Wabits
= lal gla|m
Fundtaord
A} eatern (char) st b5 val_in_rargelst
(b axtern ot mand) g Filpmmlcaltent.hi2
L} watern struct cangm makseangelet |, 0 bt
4} mteen void nethinglne |, nt () £} b _vél_n_renge()y
= (] Variables
= g i 3 obas Referenced
@
¢ : B Aegumerts
i = ™% stroct range 1
LA # et g
=i B b L
* ot L2
@ ko
8 befief214] = {F Functionretun
"8 Range P (chor) meum w_vn_saege
& sut
@ b B Assartions:
@
- . T
= Callng PC
B Sack Puieker
= B epern
B 00 ot Germrate Regorts
(T Tisestut e e)
«
Fies Furctions | Variables
Freescae 6812

In this example the argument r. 1len is specified as a set of values, and
argument v is specified as a range. This produces fifteen different sets
of input values for the test, which is pretty much the same as producing
fifteen different test cases.

© 2007 COSMIC Software

Run a test

Run a test

Once a test is completely specified, you can launch the test, and the
result will be something like:

CC Testht!

[= MWeeste
W Fuestion:
1} eatern (char) srum _val_in_sargel EE Tast Mo
() satoni e ruaic) B Fipesteaies iz
{F entern struct rarge malerangeint |,
L} estern vod nathingint |,k [} A} b _valin_rangel)
1 vorwbdes
S Bgon # (23 Gobals Referernced
#
s
*i
L4
= o rbgger
LR
im
- btfaaT4] = ff Punctionretum
=1 Range (o) rum 5 _val_n_rene
* st
™ [rigrre
LEC
W Tergen
e L o
B stack Ponter
Psperts
B Dot Gereratn Rnguets
lobals tnput:
Argumects Irgat:
ratar hasgester’
rlen: 1
Vo
Checked
< ¥ 3
b [bt | vestm |
Test Cammna Lot of 1 Freascae €812

You can see the GREEN light icon next to the function output, which
highlights the fact that the return value of the function does match the
output value specified. If that was not the case the icon would be a RED
light. You can also see the Output window which contains a textual
report as to the test execution.

© 2007 COSMIC Sofiware In Application Unit Testing

15

Adding Assertions

Adding Assertions

An assertion is an expression that will be evaluated while the program
is running. An assertion can be attached to a particular source line in the
function under test. This will allow the user to test a condition every
time this line of code is executed. Please note that the assertion is evalu-
ated BEFORE the line of code it is attached to is executed.

Assertions can, for example, allow the user to test that a particular vari-
able meets some specified condition when a line of code is reached.

To add an assertion to a test, simply right click on the Assertions icon in
the leftmost part of the test window.

The following dialog box is then displayed:

Create/edit Assertion

Line/Label Expression

Ok Cancel

The Browse Source button can be used to display the code of the func-
tion under test. You must then specify a line number or a C label and a
valid C expression that will be evaluated when that particular line of
code is reached. The line number/Label can be specified either by typ-
ing it in the or by double-clicking on it in the browse window.

When a test is executed, assertions will be displayed with a GREEN
light icon if their expression is TRUE, and will be displayed with a
RED light icon if their expression is FALSE.

Here is an example of assertion:

16 In Application Unit Testing © 2007 COSMIC Sofiware

Adding Assertions

1 =typedef struct range {
2 int start

3 it lerg

4 } RANGE;

5

&

T

L]

9

10

1

12 } BIGGER;

13

14 Uypadel int valus;

15

:: typedef enum {noy yes) resulty
1

18 result res = yes;
19 RANGE Range = {7, 12}z
20 BIGGER Bigger = {0, 1, 2, 3, (10, 200}

2 =it ufer(Z][2];
2
23+ Check # value in range
4 .
gs Imuk is_wal_in_range{RANGL r, valus v)
5 =
27 ENTER:
28 # {v € rstart)
19 sturrs {nol
30 STARTOK 1 @
bty AL s e lagh o)

Once you validate the assertion (by clicking OK), the screen will look
like:

Fun Show Cistomine Path Windows About WebShe

| Inpue Valse

O eests
1} el rerenl)

= P mpanents
= &% stuct range r
@ ik st
L

L]

' Funetion retuen
@ (tha) erum b val_in_range

= [Ausetions
@ stine27

B 00 st G ata rapete

2 Temecns (5o}

o _n_oeugm

Tast Mara; 5_val_in_raege
b esternackibest h12

Glsbals Input:

Argurments Input:
g
rlen: 5"

L T

|| exepua [Rrsbyoes Evies

Test Coner vl | ouk o 1

Fanefcain f812

© 2007 COSMIC Software

In Application Unit Testing

17

Save a Test

If we run a test with assertions here is what the screen may look like:

| ® i _val_in_rangs

Fun Show Cistomze Path Windows About WebSts

W it M
B rresterpssiestniz

& bopnicgen ®
@ {char) mum e _val_i_rage @ =

[zssertions ®
[atlie27 @ costat

R
= Caleg PC Undefired

= B Reparts
B oot Generste Reparts

E trmmcnt g enc)

Test Name: is_val_in_range
bln Féa: Fanitariack tect bt

w

Bidomad || f | FPRPY Errors

In this case you can see that the assertion is displayed with a RED light

icon because it did not evaluate to TRUE.

Assertions are the means to create “GRAY BOX Tests”, i.e. tests where
the user can see what happens inside the function under test.

Save a Test

To save a test, select the appropriate menu option under the File menu.
You will have to enter a name for the saved test. Tests are saved in

.CTH

files, and can then be later reloaded for execution or editing/

updating.

18 In Application Unit Testing © 2007 COSMIC Sofitware

Create a Testorama

Create a Testorama

A testorama is a suite of tests, all using the same executable file. When
a testorama is executed reports for all of the tests can be collated in a
unique report thus allowing the user to gather test information for a set
of related functions.

To create a testorama choose File->New->Testorama. This creates a
testorama window and the screen should look like:

Gt Testit) EIERE

R L : ; Stow Path Wk Aok Webiske
& @lw| Blaffm

Ll ® Testorama (=1

POl e ey

Fronscale_FAIZ.

The testorama window shows:
* The testorama name. You can update this by right clicking on it.

¢ The icon for the executable file that the testorama will use. This
will be updated when you add a test to the testorama.

* The Options icon will allow the user to specify options for the
testorama.

© 2007 COSMIC Sofiware In Application Unit Testing

Create a Testorama

e The set of test files for this testorama.

Here is what the screen may look like once you have started to specify
the components of the testorama:

Clestit?

ke ; S0 Run Show Path Windows About weblte

lestorama_l uca

5] Trshorama_Luea
[=tz
5] cptiens
= @ Tets
[8] Fieesteribucainothing. cth
e erhcaiber ange. cily
[¥ #ilpestedhucalioro.cm

FresScde 4012 A

This testorama is based on executable file test.h12, and it will exe-
cute the following tests in sequence:

f:\tester\luca\nothing.cth

f:\tester\luca\makerange.cth
f:\tester\luca\TOTO.cth

The options of a testorama can be viewed/specified by right clicking,
the Options icon. The following dialog is then displayed:

20 In Application Unit Testing © 2007 COSMIC Sofitware

Create a Testorama

X

Testorama Options

I~ Stop Testorama on &ny Test Failure

W Show Dutput window during execution

W Log Output in File: |cls LOG Browse
W Collate Reparts in File: |n|ama.HPT Browse
0K Caricel

The options are:
* Stop Testorama on Any Test Failure.

* Show Output window during execution. This will open the Out-
put window to show the test’s execution.

* Log Output in File. This allows the user to log the output pro-
duced in the output window in a file, which can be archived or
examined later.

* Collate Report in File. This allows the user to collate all the
report files produced by the individual tests in a unique file.

© 2007 COSMIC Sofiware In Application Unit Testing 21

Run a Testorama

Run a Testorama

Once a testorama is completely specified, you can launch the test, and
the result will be something like:

C. C-Testht!
i r
@ Fa| 8lsf/m
R maknrange_1,.1

i ﬁ Farstioen E: makorangs Test oo 1

A} extem (char er
A} etem ine maing
4} estenn struct ra |
{F et vl rot
= B Visisties

= ™0 Evgger
LN]

M Range
s

Furi Show Path Windows Aboudl WebSte

]

o B Testorama_|uca

B nolhing
=P Callegy PO 19
B stack Porter 20

= M) Reports
B Dot Gererale Rrpls

Test Name: nothing
Executable File: test.hlZ
amne: test.c

unediien :

Slabals Tnpu
ufferf
buttar]

buffert
bufferf
buffer{1
buffer{1
£ L Bigyar.c "9 -
r
Fins |Functions | Verisbles o
[Tt Casmom 1 ot of 1 Froesoal 12

A test window is opened for every test specified in the testorama. This
window shows the results of each particular test.

Save a Testorama

To save a testorama, select the appropriate menu option under the File
menu. You will have to enter a name for the testorama. Testoramas are
saved in .CTS files, and can then be later reloaded for execution or edit-
ing/updating.

In Application Unit Testing © 2007 COSMIC Sofitware

CHAPTER

3

Source Unit Testing

As explained earlier C-TestIt! can run using a C source file.
We are now going to see how to:

* Customizing C-TestIt!

* Creating a Source Test

» Specifying Input and Output values

* Runa test

* Adding Assertions

© 2007 COSMIC Sofiware Source Unit Testing 23

Customizing C-Testlt!

Customizing C-Testlt!

When using Source Testing, it is possible to customize some parts of
the product.

C-Testlt! uses name mangling to create the variables it needs in the
generated C source code. This mangling is done by prefixing the user
names with predefined strings, namely __argument__ and __ result__.
These predefined strings can be changed if the user uses some similar
convention in his own code. To do this use the Customize->Source
Options menu.

C-Testlt! can either generate simple test code, or fully instrumented
test code. The later not only includes the code to achieve the tests but
also includes code that checks the result of the test and uses the printf
channel to output test results. This can be configured via the Custom-
ize->Source Options menu.

Finally it is also possible to configure the options used to compile the
test, thus allowing to build the tests with the same options than those
that will be used for the real code. This is achieved via the Customize-
>Compiler Options menu.

24 Source Unit Testing © 2007 COSMIC Sofiware

Creating a Source Test

Creating a Source Test

To create a test, the first step is either to load a C source file that con-
tains the function to be tested. To do so you can use either the menu or
the button bar.

Once you have loaded the selected file the application pane will display
information about the application. You will then be able to list the func-
tion names and the variable names included in your application.

Your screen will look like:

Fle Taget (FreeScale_(41215mustion) Fun Show Custome Path Windows About Weblke

Furctions
A} & _vel_n_rarmetstruct 1, it ¥)
]

Feratcin 6412

Now to create a test for a specific function, just right click on the func-
tion name in the application pane; this will open a test window with all
the components of the test displayed with their default values.

If you have loaded a source file your screen will look like:

© 2007 COSMIC Sofiware Source Unit Testing

Creating a Source Test

Bun Show Cstomize Path ‘Widows Abous WebiSte

wrvsgred char vl _n_taree
[assertions
= I tont
B Tt s e}
1B Pl e b)

Reperts
D9 nat Garcats 1
Eapest

(S Temecak on sme)

Foaticn 12

The test window is composed of three columns. The leftmost one lists
all the objects that are manipulated by the test, the middle one shows
input values when appropriate, and the right most one shows output val-
ues when appropriate. When a test is created all appropriate values are
set to their defaults. “Unchanged” is used to indicate an input value
that is not specified, and “Unchecked” is used to indicate an output
value that needs not be checked for this test.

The leftmost window lists all the objects of the test in the following
order:

» Test Name: this is a name that by default is the same as the func-
tion name under test. The user can edit this by right clicking on it.

e The name of the source file that includes the function under test.

* The name of the function under test.

26 Source Unit Testing © 2007 COSMIC Sofitware

Creating a Source Test

Then we find the Globals entry. This entry exists if and only if the
function under test uses global variables of the program. This
entry can be expanded to view all the variables used as well as
their components for aggregate variables. Each of these variables
can receive an input value for the test by right clicking the corre-
sponding entry in the middle window, and receive an output value
by right clicking the corresponding entry in the rightmost window.

This is then followed by the list of arguments to the function if
appropriate. Each argument can receive an input value by right
clicking on the corresponding entry in the middle window.

The function return value. In the case of a function returning an
aggregate, this entry can be expanded to show all components.
The return value can be tested against a specified output value by
right clicking the corresponding entry in the rightmost window.

Then one finds the “Assertions”. These are conditional expres-
sions that will be tested during the execution of the function. To
add an assertion simply right click on the Assertions icon or text
in the leftmost window. This will bring up a dialog that is used to
specify assertions.

After, the Target entry is displayed. It allows the user to specify
the name of the C source file generated for the test, and the linker
command file.

e These use internal default values if none are specified.

* Specifying a source file name allows you to keep copies
of the tests and archive them if needed; if the source file
is not specified C-TestIt! uses a file called t code.c.

* Specifying a link command file gives you better control
on the test; if no link command file is specified C-TestIt!
uses a typical default link file.

* Please note that C-TestIt! needs to find a label called _exit
which is used to break execution when the test is ended; so
it is highly recommended that the C run time header file pro-
vided with compiler be used.

© 2007 COSMIC Sofiware Source Unit Testing

27

Specifying Input and Output values

* The Reports entry allows the user to specify whether reports
should be created and where they should be saved. To modify the
report status simply right click on the Reports entry in the leftmost
window.

* Finally, there is the TimeOut entry. This entry allows the user to
specify a time-out for the execution of a function. This is to cope
with situations where the code being tested does not “end” execu-
tion. The TimeOut value is used to stop a test in such cases. To
modify the TimeOut value simply right click on the correponding
middle window entry.

Specifying Input and Output values

To specify an input or an output value, right click on the appropriate
entry. Typing <RETURN> ends the editing, while typing <ESCAPE>
cancels the editing and restores the initial value. Input and output values
can be specified for globals, arguments and function return values as
either simple values or valid C expressions.

If an output value is specified as a constant or a C expression without
any comparators (i.e. <, > , ...),then itis taken to specify the exact
value of the corresponding object; otherwise it is taken to be a C expres-
sion to be evaluated and the value thus obtained is tested for TRUE or
FALSE.

For example, to ensure that the function under test returns a value
greater than zero but less than 5, we could use the following Output
Expression:

func() > 0 && func() < 5

Once the inputs and outputs have been specified the screen will look
like:

28 Source Unit Testing © 2007 COSMIC Sofiware

Specifying Input and Output values

0 Flenmipakirest.c
A} v npangedy

@ weigeddhr bs_val_in_renge

[Asiertinn

= I Target
= Test Fie hamer.c]

Link Fiet Mool 80

Regorts
B Donok Generste Reports:

(E Trrmcat (risme.)

Freetcale G012

© 2007 COSMIC Sofiware Source Unit Testing 29

Run a test

Run a test

Once a test is completely specified, you can launch the test, and the
result will be something like:

O etk TS C
1} i _valnsinosl)

T segumrts
= W st rnge
& ot 2
& e 5
LRl

= Function aun
& unscned char 5_val_in_range

r—

= M Tap
B Tes Fie Name(2}
B ok e e)

= B Reparts
B Do not Genersts Reparts

© trmecnt e}

Slobals Inpub:

Arquments Input:
ratart C13°

e 1

TEST SUCCESSRUL

< ¥

Fles. Il\nmm Variabies frE—

FroeScain 6312

You can see the GREEN light icon next to the function output, which
highlights the fact that the return value of the function does match the
output value specified. If that was not the case the icon would be a RED
light. You can also see the Output window which contains a textual
report as to the test execution.

30 Source Unit Testing © 2007 COSMIC Sofitware

Adding Assertions

Adding Assertions

An assertion is an expression that will be evaluated while the program
is running. An assertion can be attached to a particular source line in the
function under test. This will allow the user to test a condition every
time this line of code is executed. Please note that the assertion is evalu-
ated BEFORE the line of code it is attached to is executed.

Assertions can, for example, allow the user to test that a particular vari-
able meets some specified condition when a line of code is reached.

To add an assertion to a test, simply right click on the Assertions icon in
the leftmost part of the test window.

The following dialog is then displayed:

Create/edit Assertion

Line/Label Expression

Ok Cancel

The Browse Source button can be used to display the code of the func-
tion under test. You must then specify a line number or a C label and a
valid C expression that will be evaluated when that particular line of
code is reached. The line number/Label can be specified either by typ-
ing it in the or by double-clicking on it in the browse window. Please
note that at this stage there is no check done as to the validity of the
line or the Label.

When a test is executed, assertions will be displayed with a GREEN
light icon if their expression is TRUE, and will be displayed with a
RED light icon if their expression is FALSE.

Here is an example of assertion:

© 2007 COSMIC Sofiware Source Unit Testing 31

7 [veram
LS e |

1 =cypedet srus range { =
H nt start;

1 ot larg

@ } manGE]

5

& =typedet struct bigger {

7 char

U shart £

u iy
1 leng b
11 RANGE rbiggen;

12 } BiGGER;
1

14 ypaded in vaking

15

16 typadet enum {na, yes) resulty

17
w result rag = yag)

W RANGE Rangs = {7, 13}

20 BIGGER Bugger = {0, 1, 2, 3, {20, 200k

ié ik busfer 210412

25/ Check # valus in range

*

s reault is_val_in_range(RANGE r, valus v}

26 =l

27 EwTeR:

0 o (v < rustar)

29 ratiam ()

30 sTARTOM: a
3 lhn s A K|

Once you validate the assertion (by clicking OK), the screen will look
like:

B ropesteripacTEST.C
1} v ot

@ urnagred e b_valin_range

Assertions
B v 27
- g

[Test rie hame.c1
1B Lk e Mame 8)

= B hapene
B bonct Generate Regorts

(B Trsat (v ae.)

Froedcals S817 &

32 Source Unit Testing © 2007 COSMIC Sofitware

Adding Assertions

If we run a test with assertions here is what the screen may look like:

Fin Mo Show Cistomi Poth Widows Ao Wikt

T FipesteripaddTEST.C

urrigred char m_val_in_sarge

asstions
B stim: 27

= T
B Test Fae iamel)
) Lk i Barne 34}

Raports
B oot Generate Reports

B temcns frenc)

Assartions
- - Lind: 27 " < rata® LMt} Fadura(e) 1

Fins[Fuacturs | vsioies

Cutpe Errors

Freetcale €012

In this case you can see that the assertion is displayed with a RED light
icon because it did not evaluate to TRUE.

Assertions are the means to create “GRAY BOX Tests”, i.e. tests where
the user can see what happens inside the function under test.

© 2007 COSMIC Sofiware Source Unit Testing 33

A

assertion 16, 31
conditional expression 12, 27
green light icon 16, 31
red light icon 16, 31
Assertions 27
icon 16, 31
assertions 12

F
file
collate 21
function
arguments list 12, 27
name 11, 26
return value 12, 27
test 1
test at its real location 2
G
Globals
entry 12, 27

Gray Box Testing 1
GRAY BOX Tests 18, 33

I
icon
green light 15, 30
red light 15, 30
In Application Unit Testing 1

N

Index

name

0]

mangling 24

Output Expression 13, 28
Output window 15, 30

P

predefined string

R

__argument 24
__result 24

Reports

entry, source test 28

Reports entry 12

S

source test

create 25

Source Testing 24
Source Unit Testing 1

T

Target

entry 12, 27
Stack value specification 12

target

derivative 7
family 7

Index 1

test

create 10

executable file name 11
execution environment 7
input values 11, 26

launch 15, 22

launch, source test 30

log file 21

manipulated objects 11, 26
name 11, 26

name of the source file 11, 26
output values 11, 26
output window 21
parameters 1

results 1

same memory model 2
save 18

target selection 7

window 11, 26

test window 22
Testorama 3

stop 21

testorama 19

.CTH files 18
.CTS files 22
create 19

icon 19

name 19
options 20
Options icon 19
save 22

set of test files 20
specified 22
window 19

TimeOut

U

entry 12
entry, source test 28
value 12
value, source test 28

unit test 1

2 Index

\%

value
input, Unchanged 11, 26
output, Unchecked 11, 26
range 14
set of 14
specify input 13, 28
specify output 13, 28
variants
similator and hardware 3

	Introduction
	What is C-TestIt!
	C-TestIt! Main features

	Starting C-TestIt!
	C-TestIt! Display Description
	Specifying the Target Processor and the Execution Engine
	Setting up the execution environment

	In Application Unit Testing
	Creating a Test
	Specifying Input and Output values
	Run a test
	Adding Assertions
	Save a Test
	Create a Testorama
	Run a Testorama
	Save a Testorama

	Source Unit Testing
	Customizing C-TestIt!
	Creating a Source Test
	Specifying Input and Output values
	Run a test
	Adding Assertions

