
Copyright © COSMIC Software 1995, 2005

OSMIC
SoftwareC Version 4.1

C Cross Compiler User’s Guide
for Freescale XGATE
All Trademarks are the property of their respective owners

Table of Contents
Preface
Organization of this Manual ... 1

Chapter 1
Introduction

Introduction... 4
Document Conventions... 4

Typewriter font ... 4
Italics .. 5
[Brackets] ... 5
Conventions.. 6
Command Line ... 6
Flags ... 6

Compiler Architecture .. 8
Predefined Symbol.. 9
Linking.. 9
Programming Support Utilities... 9
Listings.. 9
Optimizations.. 10

Chapter 2
Tutorial Introduction

Xtest.c, Example file... 14
Default Compiler Operation ... 15

Compiling and Linking... 15
Step 1: Compiling... 15
Step 2: Assembling... 17
Step 3: Linking ... 17

Automatic Code and Data Initialization 20
Specifying Command Line Options ... 20

Chapter 3
Programming Environments

Introduction... 24
The const and volatile Type Qualifiers..................................... 25
Performing Input/Output in C... 26
Placing Data Objects in The Bss Section.................................. 27
Redefining Sections .. 27
Referencing Absolute Addresses .. 28
Accessing Internal Registers... 29
(i)

(ii)
Inserting Inline Assembly Instructions..................................... 30
Inlining with pragmas... 30
Inlining with _asm.. 31
Inlining Labels.. 33

Writing Interrupt Handlers ... 34
Placing Addresses in Gate Vectors... 35
Inline Function.. 36
Interfacing C to Assembly Language 38
Register Usage.. 39

Stack Display.. 39
Data Representation.. 42

Chapter 4
Using The Compiler

Invoking the Compiler.. 44
Compiler Command Line Options 45

File Naming Conventions ... 49
Generating Listings... 50
Generating an Error File ... 50
Return Status... 50
Examples .. 50
C Library Support ... 51

How C Library Functions are Packaged............................. 51
Inserting Assembler Code Directly 51
Linking Libraries with Your Program................................ 51
Integer Library Functions... 51
Common Input/Output Functions....................................... 52
Functions Implemented as Macros..................................... 52
Including Header Files ... 52

Descriptions of C Library Functions .. 54
Generate inline assembly code ... 55
Abort program execution.. 56
Find absolute value... 57
Arccosine.. 58
Arcsine.. 59
Arctangent .. 60
Arctangent of y/x.. 61
Convert buffer to double .. 62
Convert buffer to integer .. 63
Convert buffer to long .. 64
Get the first bit set position .. 65
Allocate and clear space on the heap.................................. 66

Test or get the carry bit... 67
Round to next higher integer .. 68
Cosine ... 69
Hyperbolic cosine... 70
Clear a semaphore .. 71
Divide with quotient and remainder 72
Exit program execution .. 73
Exponential... 74
Find double absolute value ... 75
Round to next lower integer ... 76
Find double modulus .. 77
Free space on the heap.. 78
Extract fraction from exponent part 79
Get character from input stream ... 80
Get a text line from input stream.. 81
Test for alphabetic or numeric character 82
Test for alphabetic character .. 83
Test for control character.. 84
Test for digit ... 85
Test for graphic character ... 86
Test for lowercase character ... 87
Test for printing character .. 88
Test for punctuation character .. 89
Integer square root .. 90
Test for whitespace character ... 91
Test for uppercase character ... 92
Test for hexadecimal digit .. 93
Find long absolute value... 94
Scale double exponent .. 95
Long divide with quotient and remainder 96
Natural logarithm.. 97
Common logarithm... 98
Restore calling environment... 99
Long integer square root... 100
Allocate space on the heap ... 101
Test for maximum .. 102
Scan buffer for character .. 103
Compare two buffers for lexical order 104
Copy one buffer to another... 105
Copy one buffer to another... 106
Propagate fill character throughout buffer 107
Test for minimum... 108
(iii)

(iv)
Extract fraction and integer from double 109
Test or get the parity... 110
Raise x to the y power .. 111
Output formatted arguments to stdout.............................. 112
Put a character to output stream 117
Put a text line to output stream... 118
Generate pseudo-random number 119
Reallocate space on the heap.. 120
Allocate new memory .. 121
Read formatted input .. 122
Save calling environment ... 126
Set interrupt flag... 128
Sin... 129
Hyperbolic sine... 130
Output arguments formatted to buffer.............................. 131
Real square root.. 132
Seed pseudo-random number generator 133
Read formatted input from a string 134
Set a semaphore.. 135
Concatenate strings... 136
Scan string for first occurrence of character 137
Compare two strings for lexical order.............................. 138
Copy one string to another ... 139
Find the end of a span of characters in a set..................... 140
Find length of a string .. 141
Concatenate strings of length n .. 142
Compare two n length strings for lexical order................ 143
Copy n length string ... 144
Find occurrence in string of character in set 145
Scan string for last occurrence of character 146
Find the end of a span of characters not in set 147
Scan string for first occurrence of string 148
Convert buffer to double .. 149
Convert buffer to long .. 150
Convert buffer to unsigned long....................................... 151
Tangent... 152
Hyperbolic tangent ... 153
Convert character to lowercase if necessary 154
Convert character to uppercase if necessary 155
Get pointer to next argument in list.................................. 156
Stop accessing values in an argument list 158
Start accessing values in an argument list 160

Output arguments formatted to stdout 162
Output arguments formatted to buffer 163

Chapter 5
Using The Assembler

Invoking caxgate... 166
Object File... 168
Listings.. 169
Assembly Language Syntax.. 170

Instructions ... 170
Labels ... 171
Temporary Labels... 172
Constants .. 172
Expressions... 173
Macro Instructions.. 175
Conditional Directives.. 178
Sections... 179
Includes... 179

Branch Optimization... 180
C Style Directives ... 181
Assembler Directives.. 181

Align the next instruction on a given boundary 182
Define the default base for numerical constants............... 183
Switch to the predefined .bsct section. 184
Turn listing of conditionally excluded code on or off. 185
Allocate constant(s) .. 186
Allocate constant block .. 187
Turn listing of debug directives on or off......................... 188
Allocate variable(s) .. 189
Conditional assembly ... 190
Conditional assembly ... 191
Stop the assembly ... 192
End conditional assembly... 193
End conditional assembly... 194
End macro definition .. 195
End repeat section... 196
Give a permanent value to a symbol 197
Assemble next byte at the next even address relative to the
 start of a section... 198
Generate error message. ... 199
Conditional assembly ... 200
Conditional assembly ... 201
(v)

(vi)
Conditional assembly ... 202
Conditional assembly ... 203
Conditional assembly ... 204
Conditional assembly ... 205
Conditional assembly ... 206
Conditional assembly ... 207
Conditional assembly ... 208
Conditional assembly ... 209
Conditional assembly ... 210
Include text from another text file.................................... 211
Turn on listing during assembly....................................... 212
Give a text equivalent to a symbol 213
Create a new local block .. 214
Define a macro ... 215
Send a message out to STDOUT...................................... 217
Terminate a macro definition ... 218
Turn on or off listing of macro expansion........................ 219
Turn off listing. .. 220
Disable pagination in the listing file 221
Creates absolute symbols ... 222
Sets the location counter to an offset from the beginning of
 a section.. 223
Start a new page in the listing file 224
Specify the number of lines per pages in the listing file .. 225
Repeat a list of lines a number of times 226
Repeat a list of lines a number of times 227
Restore saved section ... 229
Terminate a repeat definition ... 230
Save section.. 231
Define a new section .. 232
Give a resetable value to a symbol................................... 234
Insert a number of blank lines before the next statement in
 the listing file.. 235
Place code into a section. ... 236
Specify the number of spaces for a tab character in the
 listing file.. 237
Define default header ... 238
Declare a variable to be visible .. 239
Declare symbol as being defined elsewhere..................... 240

Chapter 6
Using The Linker

Linking XGATE Objects .. 242
Linking Library Objects.. 243

Chapter 7
Debugging Support

Chapter 8
Programming Support

Chapter A
Compiler Error Messages

Parser (cpxgate) Error Messages .. 250
Code Generator (cgxgate) Error Messages............................. 264
Assembler (caxgate) Error Messages 265
Linker (clnk) Error Messages ... 268

Chapter B
Modifying Compiler Operation

The Configuration File.. 272
Changing the Default Options .. 273

Creating Your Own Options... 273
Example .. 274

Chapter C
XGATE Machine Library

Function Listing.. 275

Chapter D
Compiler Passes

The cpxgate Parser.. 278
Command Line Options ... 278
Return Status .. 281
Example .. 281

The cgxgate Code Generator .. 283
Command Line Options ... 283
Return Status .. 284
Example .. 284

The coxgate Assembly Language Optimizer.......................... 286
Command Line Options ... 286
(vii)

(viii)
Disabling Optimization .. 287
Return Status .. 287
Example.. 287

Preface
he Cross Compiler User's Guide for XGATE is a reference guide for
programmers writing C programs for XGATE microcontroller envi-

ronments. It provides an overview of how the cross compiler works, and
explains how to compile, assemble, link and debug programs. It also
describes the programming support utilities included with the cross com-
piler and provides tutorial and reference information to help you config-
ure executable images to meet specific requirements. This manual
assumes that you are familiar with your host operating system and with
your specific target environment.

Organization of this Manual
This manual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments”, explains how to use the fea-
tures of C for XGATE to meet the requirements of your particular appli-
cation. It explains how to create a runtime startup for your application,
and how to write C routines that perform special tasks such as: serial I/O,
direct references to hardware addresses, interrupt handling, and assembly
language calls.

T

© 2005 COSMIC Software Preface 1

Organization of this Manual

2

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the XGATE assembler
and its options. It explains the rules that your assembly language source
must follow, and it documents all the directives supported by the assem-
bler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail all the features of the linker and their
use. As the XGATE compiler is an add-on to the S12X compiler, the
linker is not provided. You should then read the COSMIC’s S12X
Cross compiler User’s Guide.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators. As the XGATE compiler is an add-on to the S12X
compiler, the debugging support utilities are not provided. You should
then read the COSMIC’s S12X Cross compiler User’s Guide.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.
As the XGATE compiler is an add-on to the S12X compiler, the pro-
gramming support utilities are not provided. You should then read the
COSMIC’s S12X Cross compiler User’s Guide.

Appendix A, “Compiler Error Messages”, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Modifying Compiler Operation”, describes the “configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “XGATE Machine Library”, describes the assembly lan-
guage routines that provide support for the C runtime library.

Appendix D, “Compiler Passes”, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.
© 2005 COSMIC SoftwarePreface

CHAPTER

1

Introduction
This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections:

• Introduction

• Document Conventions

• Compiler Architecture

• Predefined Symbol

• Linking

• Programming Support Utilities

• Listings

• Optimizations
© 2005 COSMIC Software Introduction 3

Introduction1

4

Introduction
The C cross compiler targeting the XGATE microcontroller reads C
source files, assembly language source files, and object code files, and
produces an executable file. You can request listings that show your C
source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC’s C source level cross debugger or by other debug-
gers or in-circuit emulators.

You begin compilation by invoking the cxxgate compiler driver with
the specific options you need and the files to be compiled.

Document Conventions
In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at a terminal or observe in a file. The following is a list
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is
used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It is also used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to a file will appear in a line box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

cxxgate +debug acia.c
© 2005 COSMIC SoftwareIntroduction

Document Conventions
If, however, the text included a partial listing of the file acia.c ‘an
example of text from a file or from output to the terminal’ then type-
writer font would still be used, but would be enclosed in a line box:

Italics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

In this example, cxxgate +debug file.c is shown in typewriter
font because it must be typed exactly as shown. Because the filename
must be specified by the user, however, file is shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because options is not
enclosed by brackets.

/* defines the ACIA as a structure */
struct acia {

char status;
char data;
} acia @0x6000;

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

NOTE

cxxgate +debug file.c
© 2005 COSMIC Software Introduction 5

Document Conventions1

6

As another example, the line:

file1.[o|xgt]

means that one file with the extension .o or .xgt may be specified, and
the line:

file1 [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing a command line.

Command Line
A command line is generally composed of three major parts:

where <program_name> is the name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags
Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which is always a ‘-’ or a ‘+’, followed
by the name of the flag (usually a single letter). Some flags are simply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
as the second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed alphabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

program_name [<flags>] <files>
© 2005 COSMIC SoftwareIntroduction

Document Conventions
indicated by one of the following code, displayed immediately after the
option name:

If the code is immediately followed by the character ‘>’, the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex accepts the following distinct flags:

Code Type of information

* character string

short integer

long integer

? single character

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pp use paged address with mapping
-pn use paged address in bank only
-s output increasing addresses
-x* exclude named segment
© 2005 COSMIC Software Introduction 7

Compiler Architecture1

8

Compiler Architecture
The C compiler consists of several programs that work together to
translate your C source files to executable files and listings. cxxgate
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

cpxgate - the C preprocessor and language parser. cpxgate expands
directives in your C source and parses the resulting text.

cgxgate - the code generator. cgxgate accepts the output of cpxgate
and generates assembly language statements.

coxgate - the assembly language optimizer. coxgate optimizes the
assembly language code that cgxgate generates.

Flags Function

-a accept a long integer value

-b accept a long integer value

-e accept a long integer value

-f accept a single character

-h simply a flag indicator

+h accept a character string

-m accept a short integer value,

-n accept a character string and may be repeated

-o accept a character string

-p simply a flag indicator

-pn simply a flag indicator

-pp simply a flag indicator

-s simply a flag indicator

-x accept a character string and may be repeated
© 2005 COSMIC SoftwareIntroduction

Predefined Symbol
caxgate - the assembler. caxgate converts the assembly language out-
put of coxgate to a relocatable object module.

Predefined Symbol
The COSMIC compiler defines the __CSMC__ preprocessor symbol. It
expands to a numerical value whose each bit indicates if a specific
option has been activated:

bit 2: set if unsigned char option specified (-pu)
bit 4: set if reverse bitfield option specified (+rev)
bit 5: set if no enum optimization specified (-pne)

Linking
clnk combines all the object modules that make up your program with
the appropriate modules from the C library. You can also build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cxxgate, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC’s debugger to debug your code.

Programming Support Utilities
Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities to inspect the executable. As the XGATE compiler is an
add-on to the S12X compiler, the programming support utilities are not
provided. You should then read the COSMIC’s S12X C Cross compiler
Users’Guide.

Listings
Several options for listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.
© 2005 COSMIC Software Introduction 9

Optimizations1

10
If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.

Optimizations
The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:

• The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-bit.

• The compiler eliminates unreachable code.

• Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

• Integer and float constant expressions are folded at compile time.

• Redundant load and store operations are removed.

• enum is large enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

• The compiler performs multiplication by powers of two as faster
shift instructions.

• An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.

• The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
© 2005 COSMIC SoftwareIntroduction

Optimizations
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modules needed.

For information on using the compiler, see Chapter 4.
For information on using the assembler, see Chapter 5.
For information on using the linker, see Chapter 6 and the Chapter 6 of
the S12X Cross Compiler User’s Guide.
For information on debugging support, see the Chapter 7 of the S12X
Cross Compiler User’s Guide.
For information on using the programming utilities, see the Chapter 8
of the S12X Cross Compiler User’s Guide.
For information on the compiler passes, see Appendix D.
© 2005 COSMIC Software Introduction 11

CHAPTER

2

Tutorial Introduction
This chapter will demonstrate, step by step, how to compile, assemble
and link the example program xtest.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC tools, it will demonstrate the basics of using the com-
piler for the most common applications.

The code produced by the XGATE compiler will be linked with a host-
ing S12X application and cannot produced stand alone code. Examples
of link command files are sub parts of complete S12X linker files.

In this tutorial you will find information on the following topics:

• Default Compiler Operation

• Compiling and Linking

• Automatic Code and Data Initialization

• Specifying Command Line Options
© 2005 COSMIC Software Tutorial Introduction 13

Xtest.c, Example file2

14
Xtest.c, Example file
The following is a listing of xtest.c. This C source file is copied during
the installation of the compiler:

/* EXAMPLE PROGRAM FOR XGATE CODE
 * Copyright (c) 2005 by COSMIC Software
 */
#include <ioxdp512.h>
#include <processor.h>

/* dummy function for vector table
 */
@interrupt void xdumint(void)

{
}

/* function started by trigger 0
 * summing the elements from the array
 */
@interrupt void xsum(int *tab, int nb, int ares)

{
int res = ares;

res = 0; // clear result
do {

res += *tab++; // sum element
} while (--nb); // count down

XGSWT = 0x100; // acknowledge trigger
_sif(); // send S12X interrupt
}

extern int tab[]; // S12X array address

/* gate for xsum function
 * using static initialization
 */
struct argument {

int *tab; // array address
int nb; // number of elements
int res; // result value
} xargsum = {tab, 10, 0};
© 2005 COSMIC SoftwareTutorial Introduction

Compiling and Linking
Default Compiler Operation
By default, the compiler compiles and assembles your program. You
may then link object files using clnk to create an executable program.

As it processes the command line, cxxgate echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.

According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

file.s Assembler source module
file.o Relocatable object module
file.xgt input (e.g. libraries) file for the linker

Compiling and Linking
To compile and assemble xtest.c using default options, type:

The compiler writes the name of the input file it processes:

The result of the compilation process is an object module named xtest.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Step 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named xtest.s.

The -s option directs cxxgate to stop after having produced the assem-
bly file xtest.s. You can then edit this file with your favorite editor. You

cxxgate xtest.c

xtest.c:

cxxgate -s xtest.c
© 2005 COSMIC Software Tutorial Introduction 15

Compiling and Linking2

16
can also visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

If you wish to get an interspersed C and assembly language file, you
should type:

The -l option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with ‘;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.
The -v option, known as verbose mode, instructs the C compiler to dis-
play all of its actions. For example if you type:

the display will look like something similar to the following:

xtest.c:
cpxgate -o \2.cx1 -i\cx12x\hxgate -u xtest.c
cgxgate -o \2.cx2 \2.cx1
coxgate -o xtest.s \2.cx2

The compiler runs each pass:

For more information, see Appendix D, “Compiler Passes”.

cpxgate the C parser

cgxgate the assembly code generator

coxgate the optimizer

type xtest.s

cxxgate -l xtest.c

cxxgate -v -s xtest.c
© 2005 COSMIC SoftwareTutorial Introduction

Compiling and Linking
Step 2: Assembling
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is xtest.o.

or

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
a listing file named xtest.ls that will also contain a cross reference:

For more information, see Chapter 5, “Using The Assembler”.

Step 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.o) and
object files produced by the COSMIC S12X compiler into an absolute
executable file: xtest.x12 in our example. Code and data sections will
be located at absolute memory addresses. The S12X linker is used with
a command file (xtest.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, gate vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

Type Description

.xtext code (or program) section

.xconst constant and literal data

cxxgate xtest.s

caxgate -i\cx12x\hxgate xtest.s

caxgate -c -l xtest.s
© 2005 COSMIC Software Tutorial Introduction 17

Compiling and Linking2

18
In our example, and in the test file provided with the compiler, the
xtest.lkf file contains the following information:

line 1 # LINK COMMAND FILE FOR TEST PROGRAM
line 2 # Copyright (c) 2005 by COSMIC Software
line 3 #
line 4 +seg .xtext -b0xfb000 -pr -id -n.xtext # program start
line 5 +seg .xconst -a .xtext -pr -id # constants follow code
line 6 +seg .xdata -b0xfd000 -o0x1000 -pr -id -n.xdata # data start
line 7 +seg .xbss -a .xdata -pr # constants follow code
line 8 xtest.o # application program
line 9 +pri
line 10 \cx\lib\libi.xgt # C library (if needed)
line 11 +new
line 12 \cx\lib\libm.xgt # machine library
line 13 +def __xstack=0xdffe # xgate stack pointer value

You can create your own link command file by modifying the one pro-
vided with the compiler.

Here is the explanation of the lines in xtest.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#” character.

line 4: +seg .xtext -b0xfb000 -pr -id creates a text (code) seg-
ment located at global address fb000 (hexa) matching XGATE address
b000. The -pr option enforces physical relocation while the -id option
allows the segment to be copied in RAM at startup.

line 5: +seg .xconst -a.xtext -pr -id creates a constant seg-
ment located after the previous xtext segment.

line 6: +seg .xdata -b0xfd000 -o0x1000 -pr -id creates a data
segment located at global address fd100 matching XGATE address
d000 when linking an XGATE segment, and S12X address 1000 when
linking a S12X segment.

.xdata initialized data

.xbss non initialized data

Type Description
© 2005 COSMIC SoftwareTutorial Introduction

Compiling and Linking
line 7: +seg .xbss -a.xdata -pr creates a data segment located
after the previous xdata segment. No -id option is specified as this seg-
ment contains an uninitialized data.

line 8: xtest.o, the file that constitutes your application. It follows the
startup routine for code and data.

line 9: +pri starts a private region in order to avoid symbol redefinition
between XGATE and S12X standard library functions.

line 10: libi.xgt the integer library to resolve references

line 11: +new restarts a public region.

line 12: libm.xgt the machine library to resolve references

line 13: +def __xstack=0xdffe defines a symbol __xstack equal to
the absolute value dffe. The symbol __xstack is used by the code gen-
erator to initialize the stack pointer.

After you have modified the linker command file, you can link by typ-
ing:

For more information about the linker, see Chapter 6, “Using The
Linker” and Chapter 6, “Using The Linker” of the “S12X Compiler
User’s Guide”.

clnk -o xtest.x12 xtest.lkf
© 2005 COSMIC Software Tutorial Introduction 19

Automatic Code and Data Initialization2

20
Automatic Code and Data Initialization
The XGATE code is designed to be executed from the S12X RAM
space. All code and initialized data from the XGATE part of the com-
plete S12X-XGATE application is performed by the S12X startup file.
Even if the S12X part has no initialized data, the application must be
linked with the crtsx.x12 startup file, or any user provided startup deri-
vated from the crtsx.s template file.

For more information, see “Initializing data in RAM” in Chapter 3 and
“Automatic Data Initialization” in Chapter 6 of the S12X “Compiler
User’s Guide”.

Specifying Command Line Options
You specify command line options to cxxgate to control the compila-
tion process.

To compile and produce a relocatable file named xtest.o, type:

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -l option instructs the compiler driver to
create a mixed listing of C code and assembly language code in the file
xtest.ls.

To perform the operations described above, enter the command:

When the compiler exits, the following files are left in your current
directory:

• the C source file xtest.c

• the C and assembly language listing xtest.ls

• the object module xtest.o

cxxgate xtest.c

cxxgate -v -l xtest.c
© 2005 COSMIC SoftwareTutorial Introduction

Specifying Command Line Options
It is possible to locate listings and object files in specified directories if
they are different from the current one, by using respectively the -cl and
-co options:

This command will compile the xtest.c file, create a listing named
xtest.ls in the \mylist directory and an object file named xtest.o in the
\myobj directory.

cxxgate allows you to compile more than one file. The input files can
be C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

This command will assemble the start.s file, and compile the two C
source files.

See Chapter 4, “Using The Compiler” for information on these and
other command line options.

cxxgate -cl\mylist -co\myobj -l xtest.c

cxxgate -v start.s xtest.c getchar.c
© 2005 COSMIC Software Tutorial Introduction 21

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program development
system to perform special tasks required by various S12X-XGATE
applications.
© 2005 COSMIC Software Programming Environments 23

Introduction3

24
Introduction
The XGATE COSMIC compiler is an ANSI C compiler that offers sev-
eral extensions which support special requirements of embedded sys-
tems programmers. This chapter provides details about:

• The const and volatile Type Qualifiers

• Performing Input/Output in C

• Placing Data Objects in The Bss Section

• Redefining Sections

• Referencing Absolute Addresses

• Accessing Internal Registers

• Inserting Inline Assembly Instructions

• Writing Interrupt Handlers

• Placing Addresses in Gate Vectors

• Inline Function

• Interfacing C to Assembly Language

• Register Usage

• Data Representation
© 2005 COSMIC SoftwareProgramming Environments

The const and volatile Type Qualifiers
The const and volatile Type Qualifiers
You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

Volatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores a value in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) All data objects or variables associated with a memory mapped hard-
ware register e.g. volatile unsigned int PORTD @0x03;

2) All global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in an interrupt service routine.

NOTE
© 2005 COSMIC Software Programming Environments 25

Performing Input/Output in C3

26
If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no data initializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument in the related function. If you declare a
data object of const type and dynamic lifetime at block level, you must
specify its stored value by writing a data initializer. If you specify no
data initializer, the stored value is undefined.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a variable
whose value may be set by another program.

Examples of data objects declared with type qualifiers are:

Performing Input/Output in C
You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts, scanf, sprintf and sscanf. They are
described in chapter 4.

The C source code for these and all other C library functions is included
with the distribution, so that you can modify them to meet your specific
needs. Note that all input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to all input/output library functions. The library is
built in such a way so that you need only modify getchar and putchar,
the rest of the library is independent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);

char * const x; /* const pointer to char */
int * volatile; /* volatile pointer to int */
const float pi = 355.0/113.0; /* pi is never changed */
© 2005 COSMIC SoftwareProgramming Environments

Placing Data Objects in The Bss Section
Placing Data Objects in The Bss Section
The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .xbss section. All initialized static data
are placed in the .xdata section. The .xbss section is usually located
after the .xdata section by the linker command file.

The compiler provides a special option, +nobss, which forces uninitial-
ized data to be explicitly located in the .xdata section. In such a case,
these variables are considered as beeing explicitely initialized to zero.

Redefining Sections
The compiler uses by default predefined sections to output the various
components of a C program. The default sections are:

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

where <attribute> is either empty or the keyword const.

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly braces indicating initialized data

A section name is a plain C identifier which does not begin with a dot
character, and which is no longer than 13 characters. The compiler will
prefix automatically the section name with a dot character when passing

Section Description

.xtext executable code

.xconst text string and constants

.xdata initialized variables

.xbss uninitialized variables
© 2005 COSMIC Software Programming Environments 27

Referencing Absolute Addresses3

28
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the xbss section forces the compiler to
produce the memory definitions for all the previous xbss declarations
before to switch to the new section.

The following directives:

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .xcode
- strings and constants are redirected to section .xstring
- uninitialized variables are redirected to section .xudata
- initialized data are redirected to section .xidata

Note that {name} and [name] are equivalent for the constant section as
it is always considered as initialized.

The following directive:

switches back the code section to the default section .xtext.

Referencing Absolute Addresses
This C compiler allows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give a memory location a symbolic name and
associated type, and use it as you would do with any C identifier. This
feature is useful for accessing memory mapped I/O ports or for calling
functions at known addresses in ROM.

#pragma section (xcode)
#pragma section const {xstring}
#pragma section [xudata]
#pragma section {xidata}

#pragma section ()
© 2005 COSMIC SoftwareProgramming Environments

Accessing Internal Registers
References to absolute addresses have the general form @<address>,
where <address> is a valid memory location in your environment. For
example, to associate an I/O port at address 0x0 with the identifier
name PTA, write a definition of the form:

where @0x0 indicates an absolute address specification and not a data
initializer. Since input/output on the XGATE architecture is memory
mapped, performing I/O in this way is equivalent to writing in any
given location in memory.

Such a declaration does not reserve any space in memory. The compiler
still creates a label, using an equate definition, in order to reference the
C object symbolically. This symbol is made public to allow external
usage from any other file.

To use the I/O port in your application, write:

Another solutions is to use a #define directive with a cast to the type of
the object being accessed, such as:

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of a slight loss in portability.
Note that COSMIC C does support the pointer and #define methods of
implementing I/O access.

Accessing Internal Registers
All registers are declared in the “iox*.h” files provided with the com-
piler. These files should be included in each file using the input-output
registers, for example by a:

char PTA @0x0;

char c;
c = PTA; /* to read from input port */
PTA = c; /* to write to output port */

#define PTA *(char *)0x0

#include <ioxdp512.h>
© 2005 COSMIC Software Programming Environments 29

Inserting Inline Assembly Instructions3

30
All the register names are defined by assembly equates which are made
public. This allows any assembler source to use directly the input-out-
put register names by defining them with an xref directive. The
XGATE header files are the same as the S12X header files and define
all the available registers.

Inserting Inline Assembly Instructions
The compiler features two ways to insert assembly instructions in a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connection with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas
The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

The compiler also accepts shorter sequences with the same meaning:

Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the
middle.

Directive Description

#pragma asm start assembler block

#pragma endasm end assembler block

Directive Description

#asm start assembler block

#endasm end assembler block
© 2005 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
The following example shows a correct syntax:

Inlining with _asm
The _asm() function inserts inline assembly code in your C program.
The syntax is:

The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments” follow the standard C rules for
passing arguments. The string you specify follows standard C rules.

#pragma asm
xref asmvar

#pragma endasm

extern char test;

void func(void)
{
if (test)

#asm /* no need for { */
ldw r2,#asmvar ; access assembler variable
tfr r3,ccr ; get flags
stb r3,(r2) ; store flags

#endasm
else

test = 1;
}

Preprocessing directives are still handled inside assembly code, but
#define symbols or macros are not replaced within assembly instruction
and operands by default. In order to enable such a replacement in the
assembly code, the compiler must be run with the -pad option.This
expansion is limited to the simple macros (without arguments).

NOTE

_asm(“string constant”, arguments...);

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive calls to _asm().

NOTE
© 2005 COSMIC Software Programming Environments 31

Inserting Inline Assembly Instructions3

32
For example, carriage returns can be denoted by the ‘\n’ character. For
example, to produce the following assembly sequence:

you would write:

The ‘\n’ character is used to separate the instructions when writing mul-
tiple instructions in the same line.

To transfer a copy of the condition codes from a C variable to the ccr
register, you would write:

_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

allows to test the overflow bit. That way, you can use _asm() to write
equivalents of C functions directly in assembly language.

ldw r6,#_main
jal r6

_asm(“ldw r6,#_main\njal r6\n”);

_asm(“tfr ccr,r2\n”, varcc);

if (_asm(“tfr r2,ccr\n”) & 0x04)

With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the -a option is specified on the code generator. The
assembler input can use lowercase or uppercase mnemonics, and may
include assembler comments.

NOTE
© 2005 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
By default, _asm() is returning an int as any undeclared function. To
avoid the need of several definitions (usually confictuous) when _asm()
is used with different return types, the compiler implements a special
behaviour when a cast is applied to _asm(). In such a case, the cast is
considered to define the return type of _asm() instead of asking for a
type conversion. There is no need for any prototype for the _asm()
function as the parser verifies that the first argument is a string constant.

Inlining Labels
When labels are necessary in the inlined assemby code, the compiler
provides a special syntax allowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, a simple wait loop may be entered as follow:

#asm
ldw r2,#7

$N:
sub r2,#1
bne $L ; loop on the previous label

#endasm
© 2005 COSMIC Software Programming Environments 33

Writing Interrupt Handlers3

34
Writing Interrupt Handlers
A function declared with the type qualifier @interrupt is suitable for
direct connection to an XGATE interrupt. @interrupt functions cannot
return any value but may receive argument through the gate mechanism
initializing the r1 register to point at a prepared structure in the XGATE
or the S12X space. The XGATE compiler accepts either a structure
name or a list of parameters matching the structure fields as arguments.
If no argument is specified, the r1 register becomes available for code
generation.

When you define an @interrupt function, the compiler uses the “rts”
instruction for the return sequence and if necessary, initializes the r7
stack pointer with the __xstack symbol value. This symbol is usually
defined in the linker command file. The name of that predefined symbol
can be changed by using the -st option of the code generator.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such a definition is:

@interrupt void it_handler(void)
{
...
}

The @interrupt function is an extension to the ANSI standard.
NOTE
© 2005 COSMIC SoftwareProgramming Environments

Placing Addresses in Gate Vectors
Placing Addresses in Gate Vectors
You may use either an assembly language program or a C program to
place the addresses of interrupt handlers in interrupt vectors. The
assembly language program would be similar to the following example:

where handler1 and so forth are interrupt handlers.

C code that performs the same operation is:

where handler1 and so forth are interrupt handlers. Then, at link time,
this object will be part of the .xconst segment, and its address will be
used to initialized the XGATE vectors register. A complete gate file
example is provided with the compiler (xvector.c).

switch .xconst
xref handler1, handler2, handler3
xref param1, param2, param3

gate1:dc.w handler1, param1
gate2:dc.w handler2, param2
gate3:dc.w handler3, param3

end

struct gate {
void (*xpc)();
void *xr1;
};

extern void handler1(), handler2(), handler3();
extern int param1, param2, param3;
const struct xgate xvector[] =

{
{handler1, ¶m1},
{handler2, ¶m2},
{handler3, ¶m3}
};
© 2005 COSMIC Software Programming Environments 35

Inline Function3

36
Inline Function
The compiler is able to inline a function body instead of producing a
function call. This feature allows the program to run faster but produces
a larger code. A function to be inlined has to be defined with the
@inline modifier. Such a function is kept by the compiler and does not
produced any code yet. Each time this function is called in the same
source file, the call is replaced by the full body of the inlined function.
Because inlined functions are in fact local to a source file, they should
be defined in a header file if they have to be used by several source
files. To allow the arguments to be passed properly, inlined functions
must be defined with prototypes.

The compiler allows access to specific instructions or features of the
XGATE processor, using @inline functions. Such functions shall be
declared as external functions with the @inline modifier. The compiler
recognizes the following inline functions:

@inline void _sif();
@inline int _par(int);
@inline int _carry(void);
@inline int _bffo(int);
@inline void _csem(int);
@inline int _ssem(int);

_sif the _sif function is used to produce the SIF instruction.
When used without argument, a single SIF instruction is
produced. When used with one argument, it is loaded into
a register and the register SIF is produced. The _sif func-
tion does not return any value or condition.

_par the _par function is used to test or get the parity of its argu-
ment expression using the PAR instruction. If the _par
function is used in a test, the compiler produces a bcc or
bcs instruction. If the _par function is used in any other
expression, the compiler produces a code sequence setting
a register to 0 or 1 depending on the carry bit value.

Inline functions cannot declare static local variables and cannot call
themselves either directly or indirectly.

NOTE
© 2005 COSMIC SoftwareProgramming Environments

Inline Function
_carry the _carry function is used to test or get the carry bit from
the condition register. If the _carry function is used in a
test, the compiler produces a bcc or bcs instruction. If the
_carry function is used in any other expression, the com-
piler produces a code sequence setting a register to 0 or 1
depending on the carry bit value.

_bffo the _bffo function is used to produce the BFFO instruction.
The argument expression is loaded into a register and the
_bffo function returns the result of the BFFO intruction in a
register (the same or a different one depending on the fol-
lowing code).

_csem the _csem function is used to clear a semaphore whose
number is provided in argument. The _csem function does
not return any value or condition.

_ssem the _ssem function is used set a semaphore whose number
is provided in argument and also sets the carry flag. If the
_ssem function is used in a test, the compiler produces a
bcc or bcs instruction. If the _ssem function is used in any
other expression, the compiler produces a code sequence
setting a register to 0 or 1 depending on the carry bit value.

These functions are predeclared in the processor.h header file. A full
description with examples is provided in Chapter 4.
© 2005 COSMIC Software Programming Environments 37

Interfacing C to Assembly Language3

38
Interfacing C to Assembly Language
The C cross compiler translates C programs into assembly language
according to the specifications described in this section.

You may write external identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘_’ character to each identifier.

The compiler places function code in the .xtext section. Function code
is not to be altered or read as data. External function names are pub-
lished via xdef declarations.

Literal data such as strings, float or long constants, and switch tables,
are normally generated into the .xconst section. An option on the code
generator allows such constants to be produced in the .xtext section.

The compiler generates initialized data into the .xdata section. Such
external data names are published via xref declarations. Data you
declare to be of “const” type by adding the type qualifier const to its
base type is normally generated into the .xconst section. Uninitialized
data are normally generated into the .xbss section unless forced to the
.xdata section by the compiler option +nobss.

Function calls are performed according to the following steps:

1) Arguments are moved onto the stack from right to left. Unless the
function returns a double or a structure, the first argument is stored
in the r2 register if its size is less than or equal to the size of an int,
or in r2,r3 register pair if its type is long or float.

Section Declaration Reference

.xdata int init = 1 xdef

.xbss int uninit xdef

.xtext char putchar(c); xdef

.xconst const int cx = 2; xdef

Any of above extern int out; xref
© 2005 COSMIC SoftwareProgramming Environments

Register Usage
2) A data space address is moved onto the stack if a structure return
area is required.

3) The function is called using the following instructions:

4) The arguments to the function are popped off the stack.

Register Usage
Except for the return value, the registers r2 to r6 and the condition
codes are undefined on return from a function call. The return value is
in r2 if it is of type char, char widened to short, short, integer or pointer
to... , or in the register pair r2:r3 if it is of type long or float (r2 is the
most significant word). If the function has argument, r1 is pointing at
the first argument and is saved, adjusted and restored by the function
call mechanism. Otherwise, r1 is undefined.

Stack Display
On a normal function entry, if a stack is necessary, it is implemented
using the r7 register, and automatics are allocated by the sequence:

which reserves <#> bytes onto the stack.

The stack pointer is set to the beginning of the area reserved for auto-
matic data. The assembler symbol OFST is set to the size of the space

There is no widening as expected by the standard ANSI requirements
because @interrupt functions are receiving arguments from data struc-
tures. The arguments display on the stack is then matching the structure
fileds display in memory. Anyhow, the XGATE hardware needs an even
alignment for integers, so both structures and argument frames will sup-
port the same alignment whenever necessary.

NOTE

ldw r6,#_func
jal r6

sub r7,<#>
© 2005 COSMIC Software Programming Environments 39

Register Usage3

40
needed for automatics. Auto storage is on the stack at OFST-1,sp and
down. If no automatics are used, the stack frame is not built.

To return, the sequence:

will restore the previous context. Functions that do not have any argu-
ments or autos, and do not use any temporary storage (required to per-
form operations on structure data or cast float data, for example) do not
create a stack frame and exit simply with a jal r6.

The diagrams below show the stack layout at function entry func. In this
example, func has three arguments: arg1, arg2 and arg3.

@interrupt functions are in fact entry points of XGATE threads. If they
need a stack, they set the stack pointer and reserve a space directly
using the sequence:

In any case, because XGATE threads are not interruptible, @interrupt
functions are simply returning with the sequence:

locals savings arg1 arg2 arg3

During the function life, the stack pointer may change, so the bias of the
same variable may also change to compensate for the difference.

NOTE

add r7,<#>
ldw r6,(r7+) ; if r6 modifed, it was saved
jal r6

R1+2R7

ldw r7,__stack-<#>

rts
© 2005 COSMIC SoftwareProgramming Environments

Register Usage
The diagrams below show the stack layout at @interrupt function entry
func, when the +nofr option is NOT specified. In this example, func
has three arguments: arg1, arg2 and arg3.

When the +nofr option is used, an interrupt function can have only one
argument which must fit in the r1 register. In such a case, there is no
data area built for that argument which is kept in the r1 register.

locals arg1 arg2 arg3

R1R7
© 2005 COSMIC Software Programming Environments 41

Data Representation3

42
Data Representation
Data objects of type short int, int and 16 bits pointer are stored as two
bytes, more significant byte first.

Short, Int, 16 bits Pointer

Data objects of type long integer and 32 bits pointer are stored as four
bytes, in descending order of significance.

Long, 32 bits Pointer representation

Plain pointers are stored as two bytes. @tiny pointers (zero page) are
stored as one byte.

Data objects of type float are represented as for the proposed IEEE
Floating Point Standard; four bytes stored in descending order of signif-
icance. The IEEE representation is: most significant bit is one for nega-
tive numbers, and zero otherwise; the next eight bits are the
characteristic, biased such that the binary exponent of the number is the
characteristic minus 126; the remaining bits are the fraction, starting
with the weighted bit. If the characteristic is zero, the entire number is
taken as zero, and should be all zeros to avoid confusing some routines
that do not process the entire number. Otherwise there is an assumed 0.5
(assertion of the weighted bit) added to all fractions to put them in the
interval [0.5, 1.0). The value of the number is the fraction, multiplied by
-1 if the sign bit is set, multiplied by 2 raised to the exponent.

Float representation

015 8 7

Most Significant Byte Less Significant Byte

031 16 15

Most Significant Byte Less Significant Byte

24 23 8 7

031 30

CharacteristicSign Mantissa

23 22
© 2005 COSMIC SoftwareProgramming Environments

CHAPTER

4

Using The Compiler
This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describes its options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

• Invoking the Compiler

• File Naming Conventions

• Generating Listings

• C Library Support

• Descriptions of C Library Functions
© 2005 COSMIC Software Using The Compiler 43

Invoking the Compiler4

44
Invoking the Compiler
To invoke the cross compiler, type the command cxxgate, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cxxgate is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix ‘.s’. You may specify multiple input files with any com-
bination of these suffixes in any order.

If you do not specify any command line options, cxxgate will compile
your <files> with the default options. It will also write the name of each
file as it is processed. It writes any error messages to STDERR.

The following command line:

compiles and assembles the acia.c C program, creating the relocatable
program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages”, lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cxxgate processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

cxxgate [options] <files>.[c|s]

cxxgate acia.c
© 2005 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+’ that is part of the option name.

Compiler Command Line Options
The cxxgate compiler accepts the following command line options,
each of which is described in detail below:

-a*> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using
The Assembler”, to get the list of all accepted options.

cxxgate [options] <files>
-a*> assembler options
-ce* path for errors
-cl* path for listings
-co* path for objects
-d*> define symbol
-e create error file
-ec all C files
-es all assembler files
-ex* prefix executables
-f* configuration file
-g*> code generator options
-i*> path for include
-l create listing
-no do not use optimizer
-o*> optimizer options
-p*> parser options
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-v verbose
-x do not execute
+*> select compiler options
© 2005 COSMIC Software Using The Compiler 45

Invoking the Compiler4

46
-ce* specify a path for the error files. By default, errors are cre-
ated in the same directory than the source files.

-cl* specify a path for the listing files. By default, listings are
created in the same directory than the source files.

-co* specify a path for the object files. By default, objects are
created in the same directory than the source files.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e log errors from parser in a file instead of displaying them
on the terminal screen. The error file name is defaulted to
<file>.err, and is created only if there are errors.

-ec treat all files as C source files.

-es treat all files as assembler source files.

-ex use the compiler driver’s path as prefix to quickly locate
the executable passes. Default is to use the path variable
environment. This method is faster than the default behav-
iour but reduces the command line length.

-f* specify * as the name of a configuration file. This file con-
tains a list of options which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cxxgate.cxf in
the compiler directory as specified in the installation proc-
ess. For more information, see Appendix B, “Modifying
Compiler Operation”.

-g*> specify code generation options. Up to 60 options can be
specified. See Appendix D, “Compiler Passes”, for the
list of all accepted options.
© 2005 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
-i*> define include path. You can define up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-no do not use the optimizer.

-o*> specify optimizer options. Up to 60 options can be speci-
fied. See Appendix D, “Compiler Passes”, for the list of
all accepted options.

-p*> specify parser options. Up to 60 options can be specified.
See Appendix D, “Compiler Passes”, for the list of all
accepted options.

-s create only assembler files and stop. Do not assemble the
files produced.

-sp create only preprocessed files and stop. Do not compile
files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

-t* specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

-v be “verbose”. Before executing a command, print the com-
mand, along with its arguments, to STDOUT. The default
is to output only the names of each file processed. Each
name is followed by a colon and newline.

-x do not execute the passes, instead, write to STDOUT the
commands which otherwise would have been performed.

+*> select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 20
compiler options on the command line. The following doc-
uments the available options as provided by the default
configuration file:
© 2005 COSMIC Software Using The Compiler 47

Invoking the Compiler4

48
+debug produce debug information to be used by the debug utili-
ties provided with the compiler and by any external debug-
ger.

+nobss do not use the .bss section. By default, uninitialized varia-
bles are defined into the .bss section. This option is useful
to force all variables to be grouped into a single section.

+nocst output literals and contants in the code section .text instead
of the specific section .const.

+nofr uses r1 as the only argument of interrupt functions. By
default, r1 is handled as a frame pointer and allows several
arguments to be passed to interrupt functions.

+proto enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

+rev reverse the bitfield filling order. By default, bitfields are
filled from the less significant bit (LSB) towards the most
significant bit (MSB) of a memory cell. If the +rev option
is specified, bitfields are filled from the msb to the lsb.

+v1 produce code for first silicon versions. By default, code is
targeting second silicon versions.

+warn enable warnings.
© 2005 COSMIC SoftwareUsing The Compiler

File Naming Conventions
File Naming Conventions
The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted as input or generated as output.

Program Input File Name Output File Name

cpxgate <file>.c <file>.1

cgxgate <file>.1 <file>.2

coxgate <file>.2 <file>.s

error listing <file>.c <file>.err

assembler listing <file>.[c|s] <file>.ls

C header files <file>.h

caxgate <file>.s <file>.o

source listing <file>.s <file>.ls

clnk <file>.o name required
© 2005 COSMIC Software Using The Compiler 49

Generating Listings4

50
Generating Listings
You can generate listings of the output of any (or all) the compiler
passes by specifying the -l option to cxxgate. You can locate the listing
file in a different directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C source file acia.c with the -l option:

Generating an Error File
You can generate a file containing all the error messages output by the
parser by specifying the -e option to cxxgate. You can locate the error
file in a different directory by using the -ce option. For example, you
would type:

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Return Status
cxxgate returns success if it can process all files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

Examples
To echo the names of each program that the compiler runs:

To save the intermediate files created by the code generator and halt
before the assembler:

cxxgate -l acia.c

cxxgate -e prog.c

cxxgate -v acia.c

cxxgate -s file.c
© 2005 COSMIC SoftwareUsing The Compiler

C Library Support
C Library Support
This section describes the facilities provided by the C library. The C
cross compiler for XGATE includes all useful functions for program-
mers writing applications for ROM-based systems.

How C Library Functions are Packaged
The functions in the C library are packaged in three separate sub-librar-
ies, one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library) and one that pro-
vides full floating point support (the floating point library). If your
application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
the integer library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and
entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library as it is recog-
nized by the compiler itself. See “Inserting Inline Assembly Instruc-
tions” in Chapter 3

Linking Libraries with Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

Integer Library Functions
The following table lists the C library functions in the integer library.

_asm isprint putchar strcspn
abs ispunct puts strlen
atoi isspace rand strncat
atol isupper realloc strncmp
calloc isxdigit sbreak strncpy
free labs scanf strpbrk
getchar longjmp setjmp strrchr
gets malloc sprintf strspn
isalnum memchr srand strstr
© 2005 COSMIC Software Using The Compiler 51

C Library Support4

52
isalpha memcmp sscanf strtol
iscntrl memcpy strcat tolower
isdigit memmove strchr toupper
isgraph memset strcmp vprintf
islower printf strcpy vsprintf

Floating Point Library Functions
The following table lists the C library functions in the float library.

acos exp modf sscanf
asin fabs pow strtod
atan floor printf tan
atan2 fmod scanf tanh
atof frexp sin vprintf
ceil ldexp sinh vsprintf
cos log sprintf
cosh log10 sqrt

Common Input/Output Functions
Six of the functions that perform stream input/output are included in
both the integer and floating point libraries. The functionalities of the
versions in the integer library are a subset of the functionalities of their
floating point counterparts. The versions in the integer library cannot
print or manipulate floating point numbers. These functions are: printf,
scanf, sprintf, sscanf, vprintf and vsprintf.

Functions Implemented as Macros
Five of the functions in the C library are actually implemented as “mac-
ros”. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are
defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: max, min, va_arg, va_end, and
va_start.

Including Header Files
If your application calls a C library function, you must include the
header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that all the
© 2005 COSMIC SoftwareUsing The Compiler

C Library Support
expected arguments are properly evaluated. You do this by writing a
preprocessor directive of the form:

in your program, where <header_name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<iox*.h> - Header file for input-output registers. Each register has an
upper-case name which matches the standard Motorola definition.

<limits.h> - Header file for limit constants of the compiler.

<math.h> - Header file for mathematical functions: acos, asin, atan,
atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10,
modf, pow, sin, sinh, sqrt, tan and tanh.

<processor.h> - Header file for inline functions: _sif, _par, _carry,
_bffo, _csem, _ssem.

<setjmp.h> - Header file for nonlocal jumps: setjmp and longjmp.

<stdarg.h> - Header file for walking argument lists: va_arg, va_end
and va_start. Use these macros with any function you write that must
accept a variable number of arguments.

<stddef.h> - Header file for types: size_t, wchar_t and ptrdiff_t.

#include <header_name>
© 2005 COSMIC Software Using The Compiler 53

Descriptions of C Library Functions4

54
<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts, scanf, sprintf, sscanf, vprintf and vsprintf.

<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
calloc, div, exit, free, isqrt, labs, ldiv, lsqrt, malloc, rand, realloc,
srand, strtod, strtol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file, since int is the function
return type that the compiler assumed by default, are: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, sbreak, tolower and toupper.

Descriptions of C Library Functions
The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.
© 2005 COSMIC SoftwareUsing The Compiler

C Library - _asm

_asm

Description

Generate inline assembly code

Syntax

Function
_asm() generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. <arguments> are
first evaluated following the usual rules for passing arguments. The first
argument is kept in the a register whenever possible, and all other argu-
ments are pushed onto the stack. After the <string constant> code is
output, arguments pushed to the stack are removed before to continue.

For more information, see “Inserting Inline Assembly Instructions” in
Chapter 3.

Return Value
Nothing, unless _asm() is used in an expression. In that case, normal
return conventions must be followed. See “Register Usage” in Chapter
3.

Example
The sequence ldw r6,#_main,jal r6, may be generated by the following
call:

_asm(“ldw r6,#_main\njal r6\n”);

Note that the string-quoting syntax matches the familiar printf() func-
tion.

Notes
_asm() is not packaged in any library. It is recognized by the compiler
itself.

_asm(“string constant”, arguments...)
© 2005 COSMIC Software Using The Compiler 55

C Library - abort

abort

4

56
Description
Abort program execution

Syntax

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also
exit

Notes
abort is a macro equivalent to the function name exit.

#include <stdlib.h>
void abort(void)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - abs

abs

Description

Find absolute value

Syntax

Function
abs obtains the absolute value of i. No check is made to see that the
result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “”);

See Also
labs, fabs

Notes
abs is packaged in the integer library.

#include <stdlib.h>
int abs(int i)
© 2005 COSMIC Software Using The Compiler 57

C Library - acos

acos

4

58
Description
Arccosine

Syntax

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If x is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also
asin, atan, atan2

Notes
acos is packaged in the floating point library.

#include <math.h>
double acos(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - asin

asin

Description

Arcsine

Syntax

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If x is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

#include <math.h>
double asin(double x)
© 2005 COSMIC Software Using The Compiler 59

C Library - atan

atan

4

60
Description
Arctangent

Syntax

Function
atan computes the angle in radians; the tangent of which is x, atan
computes the angle in radians; the tangent of which is x, to full double
precision.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
a double floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of a vector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

#include <math.h>
double atan(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - atan2

atan2

Description

Arctangent of y/x

Syntax

Function
atan2 computes the angle in radians the tangent of which is y/x to full
double precision. If y is negative, the result is negative. If x is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed
as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of a vector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also
acos, asin, atan

Notes
atan2 is packaged in the floating point library.

#include <math.h>
double atan2(double y, double x)
© 2005 COSMIC Software Using The Compiler 61

C Library - atof

atof

4

62
Description
Convert buffer to double

Syntax

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

#include <stdlib.h>
double atof(char *nptr)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - atoi

atoi

Description

Convert buffer to integer

Syntax

Function
atoi converts the string at nptr into an integer. The string is taken as the
text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is l or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to an int at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

#include <stdlib.h>
int atoi(char *nptr)
© 2005 COSMIC Software Using The Compiler 63

C Library - atol

atol

4

64
Description
Convert buffer to long

Syntax

Function
atol converts the string at nptr into a long integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is l or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

#include <stdlib.h>
long atol(char *nptr)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - _bffo

_bffo

Description

Get the first bit set position

Syntax

Function
_bffo is an inline function allowing to get the position of the first bit set
in its argument expression, by using a BFFO instruction. The carry flag
is also set but cannot be tested directly as for the other flags (zero, neg-
ative). If necessary, it can be tested by the _carry inline function.

Return Value
_bffo returns the BFFO instruction result in a register and sets the flags
accordingly.

Example
n = _bffo(v); produces ldw r2,(r1,#2)

bffo r3,r2
stw r3,(r1,#4)

See Also
_carry

Notes
_bffo is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline int _bffo(int)
© 2005 COSMIC Software Using The Compiler 65

C Library - calloc

calloc

4

66
Description
Allocate and clear space on the heap

Syntax

Function
calloc allocates space on the heap for an item of size nbytes, where
nbytes = nelem * elsize. The space allocated is guaranteed to be at least
nbytes long, starting from the pointer returned, which is guaranteed to
be on a proper storage boundary for an object of any type. The heap is
grown as necessary. If space is exhausted, calloc returns a null pointer.
The pointer returned may be assigned to an object of any type without
casting. The allocated space is initialized to zero.

Return Value
calloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL.

Example
To allocate an array of ten doubles:

double *pd;
pd = calloc(10, sizeof (double));

See Also
free, malloc, realloc

Notes
calloc is packaged in the integer library.

#include <stdlib.h>
void *calloc(int nelem, int elsize)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - _carry

_carry

Description

Test or get the carry bit

Syntax

Function
_carry is an inline function allowing to test or get the value of the carry
bit. When used in an if construct, this function expands directly to a bcc
or bcs instruction. When used in an expression, it expands in order to
build in a register the value 0 or 1 depending on the carry bit value.

Return Value
_carry returns 0 or 1 in the a register if such a value is needed.

Example
low <<= 1; produces lsl r2,#1
if (_carry()) bcc L1

++high; add r3,#1
L1:

low <<= 1; produces lsl r2,#1
high = _carry() adc r3,r0,r0

See Also
_bffo

Notes
_carry is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline int _carry(void)
© 2005 COSMIC Software Using The Compiler 67

C Library - ceil

ceil

4

68
Description
Round to next higher integer

Syntax

Function
ceil computes the smallest integer greater than or equal to x.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed as
a double floating value.

Example
x ceil(x)

5.1 6.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -5.0

See Also
floor

Notes
ceil is packaged in the floating point library.

#include <math.h>
double ceil(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - cos

cos

Description

Cosine

Syntax

Function
cos computes the cosine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of cos is 1.

Return Value
cos returns the nearest internal representation to cos(x) in the range [0,
pi], expressed as a double floating value. A large argument may return a
meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
sin, tan

Notes
cos is packaged in the floating point library.

#include <math.h>
double cos(double x)
© 2005 COSMIC Software Using The Compiler 69

C Library - cosh

cosh

4

70
Description
Hyperbolic cosine

Syntax

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a
double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moivre's theorem to compute (cosh x + sinh x) to the nth
power:

demoivre = cosh(n * x) + sinh(n * x);

See Also
exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

#include <math.h>
double cosh(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - _csem

_csem

Description

Clear a semaphore

Syntax

Function
_csem is an inline function allowing to clear a semaphore given by the
argument, by using the CSEM instruction.

Return Value
_csem returns nothing.

Example
_csem(3); produces csem #3

_csem(s); produces ldw r2,(r1,#2)
csem r2

Notes
_csem is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline void _csem(int)
© 2005 COSMIC Software Using The Compiler 71

C Library - div

div

4

72
Description
Divide with quotient and remainder

Syntax

Function
div divides the integer numer by the integer denom and returns the quo-
tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

div_t result;

result = div(time, 60);
min = result.quo;
sec = result.rem;

See Also
ldiv

Notes
div is packaged in the integer library.

#include <stdlib.h>
div_t div(int numer, int denom)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - exit

exit

Description

Exit program execution

Syntax

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the call to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit is in the startup module.

#include <stdlib.h>
void exit(int status)
© 2005 COSMIC Software Using The Compiler 73

C Library - exp

exp

4

74
Description
Exponential

Syntax

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a
double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(x) - exp(-x)) / 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

#include <math.h>
double exp(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - fabs

fabs

Description

Find double absolute value

Syntax

Function
fabs obtains the absolute value of x.

Return Value
fabs returns the absolute value of x, expressed as a double floating
value.

Example
x fabs(x)

5.0 5.0
0.0 0.0

-3.7 3.7

See Also
abs, labs

Notes
fabs is packaged in the floating point library.

#include <math.h>
double fabs(double x)
© 2005 COSMIC Software Using The Compiler 75

C Library - floor

floor

4

76
Description
Round to next lower integer

Syntax

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a
double floating value.

Example
x floor(x)

5.1 5.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -6.0

See Also
ceil

Notes
floor is packaged in the floating point library.

#include <math.h>
double floor(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - fmod

fmod

Description

Find double modulus

Syntax

Function
fmod computes the floating point remainder of x / y, to full double pre-
cision. The return value of f is determined using the formula:

f = x - i * y

where i is some integer, f is the same sign as x, and the absolute value
of f is less than the absolute value of y.

Return Value
fmod returns the value of f expressed as a double floating value. If y is
zero, fmod returns zero.

Example
x y fmod(x, y)

5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0

-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

#include <math.h>
double fmod(double x, double y)
© 2005 COSMIC Software Using The Compiler 77

C Library - free

free

4

78
Description
Free space on the heap

Syntax

Function
free returns an allocated cell to the heap for subsequence reuse. The cell
pointer ptr must have been obtained by an earlier calloc, malloc, or
realloc call; otherwise the heap will become corrupted. free does its
best to check for invalid values of ptr. A NULL value for ptr is explic-
itly allowed, however, and is ignored.

Return Value
Nothing.

Example
To give back an allocated area:

free(pd);

See Also
calloc, malloc, realloc

Notes
No effort is made to lower the system break when storage is freed, so it
is quite possible that earlier activity on the heap may cause problems
later on the stack.

free is packaged in the integer library.

#include <stdlib.h>
void free(void *ptr)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - frexp

frexp

Description

Extract fraction from exponent part

Syntax

Function
frexp partitions the double at val, which should be non-zero, into a frac-
tion in the interval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractional portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val as the return
value of the function, and writes the exponent at *exp.

Example
To implement the sqrt(x) function:

double sqrt(double x)
{
extern double newton(double);
int n;

x = frexp(x, &n);
x = newton(x);
if (n & 1)

x *= SQRT2;
return (ldexp(x, n / 2));
}

See Also
ldexp

Notes
frexp is packaged in the floating point library.

#include <math.h>
double frexp(double val, int *exp)
© 2005 COSMIC Software Using The Compiler 79

C Library - getchar

getchar

4

80
Description
Get character from input stream

Syntax

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or a read error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes
getchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

#include <stdio.h>
int getchar(void)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - gets

gets

Description

Get a text line from input stream

Syntax

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
gets returns s if successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
puts

Notes
There is no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

#include <stdio.h>
char *gets(char *s)
© 2005 COSMIC Software Using The Compiler 81

C Library - isalnum

isalnum

4

82
Description
Test for alphabetic or numeric character

Syntax

Function
isalnum tests whether c is an alphabetic character (either upper or
lower case), or a decimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric
character; otherwise the value returned is zero.

Example
To test for a valid C identifier:

if (isalpha(*s) || *s == '_')
for (++s; isalnum(*s) || *s == '_'; ++s)

;

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnum is packaged in the integer library.

#include <ctype.h>
int isalnum(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - isalpha

isalpha

Description

Test for alphabetic character

Syntax

Function
isalpha tests whether c is an alphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an alphabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && !isalpha(*first))
++first;

for (last = first; isalpha(*last); ++last)
;

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

#include <ctype.h>
int isalpha(int c)
© 2005 COSMIC Software Using The Compiler 83

C Library - iscntrl

iscntrl

4

84
Description
Test for control character

Syntax

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-
nary control character (less than 040 in ASCII).

Return Value
iscntrl returns nonzero if c is a control character; otherwise the value is
zero.

Example
To map control characters to percent signs:

for (; *s; ++s)
if (iscntrl(*s))

*s = '%';

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

#include <ctype.h>
int iscntrl(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - isdigit

isdigit

Description

Test for digit

Syntax

Function
isdigit tests whether c is a decimal digit.

Return Value
isdigit returns nonzero if c is a decimal digit; otherwise the value
returned is zero.

Example
To convert a decimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - '0';

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

#include <ctype.h>
int isdigit(int c)
© 2005 COSMIC Software Using The Compiler 85

C Library - isgraph

isgraph

4

86
Description
Test for graphic character

Syntax

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if c is a graphic character. Otherwise the value
returned is zero.

Example
To output only graphic characters:

for (; *s; ++s)
if (isgraph(*s))

putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

#include <ctype.h>
int isgraph(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - islower

islower

Description

Test for lowercase character

Syntax

Function
islower tests whether c is a lowercase alphabetic character.

Return Value
islower returns nonzero if c is a lowercase character; otherwise the
value returned is zero.

Example
To convert to uppercase:

if (islower(c))
c += 'A' - 'a'; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

#include <ctype.h>
int islower(int c)
© 2005 COSMIC Software Using The Compiler 87

C Library - isprint

isprint

4

88
Description
Test for printing character

Syntax

Function
isprint tests whether c is any printing character. Printing characters are
all characters between a space (040 in ASCII) and a tilde ‘~’ character
(0176 in ASCII).

Return Value
isprint returns nonzero if c is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)
if (isprint(*s))

putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

#include <ctype.h>
int isprint(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - ispunct

ispunct

Description

Test for punctuation character

Syntax

Function
ispunct tests whether c is a punctuation character. Punctuation charac-
ters include any printing character except space, a digit, or a letter.

Return Value
ispunct returns nonzero if c is a punctuation character; otherwise the
value returned is zero.

Example
To collect all punctuation characters in a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))

buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

#include <ctype.h>
int ispunct(int c)
© 2005 COSMIC Software Using The Compiler 89

C Library - isqrt

isqrt

4

90
Description
Integer square root

Syntax

Function
isqrt obtains the integral square root of the unsigned int i.

Return Value
isqrt returns the closest integer smaller or equal to the square root of i,
expressed as an unsigned int.

Example
To use isqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = isqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
lsqrt, sqrt

Notes
isqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int isqrt(unsigned int i)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - isspace

isspace

Description

Test for whitespace character

Syntax

Function
isspace tests whether c is a whitespace character. Whitespace charac-
ters are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v’), form feed
(‘\f’), carriage return (‘\r’), and space (’ ’).

Return Value
isspace returns nonzero if c is a whitespace character; otherwise the
value returned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++s;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

#include <ctype.h>
int isspace(int c)
© 2005 COSMIC Software Using The Compiler 91

C Library - isupper

isupper

4

92
Description
Test for uppercase character

Syntax

Function
isupper tests whether c is an uppercase alphabetic character.

Return Value
isupper returns nonzero if c is an uppercase character; otherwise the
value returned is zero.

Example
To convert to lowercase:

if (isupper(c))
c += 'a' - 'A'; /* also see tolower() */

See Also
isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

int isupper(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - isxdigit

isxdigit

Description

Test for hexadecimal digit

Syntax

Function
isxdigit tests whether c is a hexadecimal digit, i.e. in the set
[0123456789abcdefABCDEF].

Return Value
isxdigit returns nonzero if c is a hexadecimal digit; otherwise the value
returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 10 + *s - '0';
else

sum = sum * 10 + tolower(*s) + (10 - 'a');

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

#include <ctype.h>
int isxdigit(int c)
© 2005 COSMIC Software Using The Compiler 93

C Library - labs

labs

4

94
Description
Find long absolute value

Syntax

Function
labs obtains the absolute value of l. No check is made to see that the
result can be properly represented.

Return Value
labs returns the absolute value of l, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “”);

See Also
abs, fabs

Notes
labs is packaged in the integer library.

#include <stdlib.h>
long labs(long l)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - ldexp

ldexp

Description

Scale double exponent

Syntax

Function
ldexp multiplies the double x by two raised to the integer power exp.

Return Value
ldexp returns the double result x * (1 << exp) expressed as a double
floating value. If a range error occurs, ldexp returns HUGE_VAL.

Example
x exp ldexp(x, exp)
1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 0 0.0

See Also
frexp, modf

Notes
ldexp is packaged in the floating point library.

#include <math.h>
double ldexp(double x, int exp)
© 2005 COSMIC Software Using The Compiler 95

C Library - ldiv

ldiv

4

96
Description
Long divide with quotient and remainder

Syntax

Function
ldiv divides the long integer numer by the long integer denom and
returns the quotient and the remainder in a structure of type ldiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
ldiv returns a structure of type ldiv_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

ldiv_t result;
result = ldiv(time, 60L);
min = result.quo;
sec = result.rem;

See Also
div

Notes
ldiv is packaged in the integer library.

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - log

log

Description

Natural logarithm

Syntax

Function
log computes the natural logarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a
double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

#include <math.h>
double log(double x)
© 2005 COSMIC Software Using The Compiler 97

C Library - log10

log10

4

98
Description
Common logarithm

Syntax

Function
log10 computes the common log of x to full double precision by com-
puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, a range error will occur.

Return Value
log10 returns the nearest internal representation to log10 x, expressed
as a double floating value. If the input argument is less than or equal to
zero, log10 returns zero.

Example
To determine the number of digits in x, where x is a positive integer
expressed as a double:

ndig = log10(x) + 1;

See Also
log

Notes
log10 is packaged in the floating point library.

#include <math.h>
double log10(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - longjmp

longjmp

Description

Restore calling environment

Syntax

Function
longjmp restores the environment saved in env by setjmp. If env has not
been set by a call to setjmp, or if the caller has returned in the mean-
time, the resulting behaviour is unpredictable.

All accessible objects have their values restored when longjmp is
called, except for objects of storage class register, the values of which
have been changed between the setjmp and longjmp calls.

Return Value
When longjmp returns, program execution continues as if the corre-
sponding call to setjmp had returned the value val. longjmp cannot force
setjmp to return the value zero. If val is zero, setjmp returns the value
one.

Example
You can write a generic error handler as:

void handle(int err)
{
extern jmp_buf env;
longjmp(env, err); /* return from setjmp */
}

See Also
setjmp

Notes
longjmp is packaged in the integer library.

#include <setjmp.h>
void longjmp(jmp_buf env, int val)
© 2005 COSMIC Software Using The Compiler 99

C Library - lsqrt

lsqrt

4

100
Description
Long integer square root

Syntax

Function
lsqrt obtains the integral square root of the unsigned long l.

Return Value
lsqrt returns the closest integer smaller or equal to the square root of l,
expressed as an unsigned int.

Example
To use lsqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = lsqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, sqrt

Notes
lsqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int lsqrt(unsigned long l)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - malloc

malloc

Description

Allocate space on the heap

Syntax

Function
malloc allocates space on the heap for an item of size nbytes. The space
allocated is guaranteed to be at least nbytes long, starting from the
pointer returned, which is guaranteed to be on a proper storage bound-
ary for an object of any type. The heap is grown as necessary. If space is
exhausted, malloc returns a null pointer.

Return Value
malloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL. The pointer returned may be assigned to an
object of any type without casting.

Example
To allocate an array of ten doubles:

double *pd;

pd = malloc(10 * sizeof *pd);

See Also
calloc, free, realloc

Notes
malloc is packaged in the integer library.

#include <stdlib.h>
void *malloc(unsigned int nbytes)
© 2005 COSMIC Software Using The Compiler 101

C Library - max

max

4

102
Description
Test for maximum

Syntax

Function
max obtains the maximum of its two arguments, a and b. Since max is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a < b) ? b : a), suitably paren-
thesized.

Example
To set a new maximum level:

hiwater = max(hiwater, level);

See Also
min

Notes
max is an extension to the proposed ANSI C standard.

max is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, max
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated other than once.

#include <stdlib.h>
max(a,b)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - memchr

memchr

Description

Scan buffer for character

Syntax

Function
memchr looks for the first occurrence of a specific character c in an n
character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches c, or NULL
if no character matches.

Example
To map keybuf[] characters into subst[] characters:

if ((t = memchr(keybuf, *s, KEYSIZ)) != NULL)
*s = subst[t - keybuf];

See Also
strchr, strcspn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

#include <string.h>
void *memchr(void *s, int c, unsigned int n)
© 2005 COSMIC Software Using The Compiler 103

C Library - memcmp

memcmp

4

104
Description
Compare two buffers for lexical order

Syntax

Function
memcmp compares two text buffers, character by character, for lexical
order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, “include”, 7) == 0)
doinclude();

See Also
strcmp, strncmp

Notes
memcmp is packaged in the integer library.

#include <string.h>
int memcmp(void *s1, void *s2, unsigned int n)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - memcpy

memcpy

Description

Copy one buffer to another

Syntax

Function
memcpy copies the first n characters starting at location s2 into the
buffer beginning at s1.

Return Value
memcpy returns s1.

Example
To place “first string, second string” in buf[]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, “, second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is packaged in the integer library.

#include <string.h>
void *memcpy(void *s1, void *s2, unsigned int n)
© 2005 COSMIC Software Using The Compiler 105

C Library - memmove

memmove

4

106
Description
Copy one buffer to another

Syntax

Function
memmove copies the first n characters starting at location s2 into the
buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns s1.

Example
To shift an array of characters:

memmove(buf, &buf[5], 10);

See Also
memcpy

Notes
memmove is packaged in the integer library.

#include <string.h>
void *memmove(void *s1, void *s2, unsigned int n)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - memset

memset

Description

Propagate fill character throughout buffer

Syntax

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULs:

memset(buf,'\0', BUFSIZ);

Notes
memset is packaged in the integer library and may be implemented as
an inline function.

#include <string.h>
void *memset(void *s, int c, unsigned int n)
© 2005 COSMIC Software Using The Compiler 107

C Library - min

min

4

108
Description
Test for minimum

Syntax

Function
min obtains the minimum of its two arguments, a and b. Since min is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a : b), suitably paren-
thesized.

Example
To set a new minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, min
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated more than once.

#include <stdlib.h>
min(a, b)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - modf

modf

Description

Extract fraction and integer from double

Syntax

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at *pd.

Example
val *pd modf(val, *pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0

-1.4 -1 -0.4

See Also
frexp, ldexp

Notes
modf is packaged in the floating point library.

#include <math.h>
double modf(double val, double *pd)
© 2005 COSMIC Software Using The Compiler 109

C Library - _par

_par

4

110
Description
Test or get the parity

Syntax

Function
_par is an inline function allowing to test or get the parity of the argu-
ment expression, by using the PAR instruction. When used in an if con-
struct, this function expands directly to a bcc or bcs instruction. When
used in an expression, it expands in order to build in a register the value
0 or 1 depending on the carry bit value.

Return Value
_par returns 0 or 1 in the a register if such a value is needed.

Example
if (_par(x)) produces ldw r2,(r1,#2)

even = 0; par r2
bcc L1
stw r0,(r1,#4)

L1:

even = _par(x); produces ldw r2,(r1,#2)
par r2
adc r3,r0,r0
stw r3,(r1,#4)

Notes
_par is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline int _par(int)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - pow

pow

Description

Raise x to the y power

Syntax

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-
ble floating value. If x is zero and y is less than or equal to zero, or if x
is negative and y is not an integer, pow returns zero.

Example
x y pow(x, y)

2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 0

-1.0 2.0 1.0
-1.0 2.1 0

See Also
exp

Notes
pow is packaged in the floating point library.

#include <math.h>
double pow(double x, double y)
© 2005 COSMIC Software Using The Compiler 111

C Library - printf

printf

4

112
Description
Output formatted arguments to stdout

Syntax

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers
The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%’, the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - a decimal number which optionally specifies a mini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding is with spaces unless the
field width digit string starts with zero, in which case the padding is
with zeros.

#include <stdio.h>
int printf(char *fmt, ...)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - printf
<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, o, u, x, and X conversions, the
number of digits to appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by a decimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, o, u, x, or X conversion
character applies to a short int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, it is ignored.

l - optionally specifies that the d, i, o, u, x, and X conversion character
applies to a long int or unsigned long int argument. It specifies a long or
far pointer argument if used with the p conversion character. If the l
appears with any other conversion character, it is ignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to a long double argument. If the L appears with any
other conversion character, it is ignored.

<conversion character> - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk
‘*’instead of a digit string. In this case, an int argument supplies the
field width or precision. The arguments supplying field width must
appear before the optional argument to be converted. A negative field
width argument is taken as a - flag followed by a positive field width. A
negative precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

space - a space will be prepended if the first character of a signed con-
version is not a sign. This flag will be ignored if space and + flags are
both specified.
© 2005 COSMIC Software Using The Compiler 113

C Library - printf4

114
- result is to be converted to an “alternate form”. For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e, E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.

- - result of conversion will be left justified within the field.

The <conversion character> is one of the following:

% - a ‘%’ is printed. No argument is converted.

c - the least significant byte of the int argument is converted to a char-
acter and printed.

d, i, o, u, x, X - the int argument is converted to signed decimal (d or
i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.

f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is
© 2005 COSMIC SoftwareUsing The Compiler

C Library - printf
equal to the precision specification. If the precision is missing, it is
taken as 6. If the precision is explicitly zero, no decimal point appears.
If a decimal point appears, at least one digit appears before it.

g, G - the double argument is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
e will be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; a decimal point appears only if it is followed by a digit.

n - the argument is taken to be an int * pointer to an integer into which
is written the number of characters written to the output stream so far by
this call to printf. No argument is converted.

p - the argument is taken to be a void * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

s - the argument is taken to be a char * pointer to a string. Characters
from the string are written up to, but not including, the terminating
NUL, or until the number of characters indicated by the precision are
written. If the precision is missing, it is taken to be arbitrarily large, so
all characters before the first NUL are printed.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

If any argument is or points to an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of a field;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.

Return Value
printf returns the number of characters transmitted, or a negative
number if a write error occurs.
© 2005 COSMIC Software Using The Compiler 115

C Library - printf4

116
Notes
A call with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is a double with the value 5100.53:

printf(“%8.2f\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiers are invalid: e, E, f, g and G. The L modifier is also invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
is ignored and no special message is generated.
© 2005 COSMIC SoftwareUsing The Compiler

C Library - putchar

putchar

Description

Put a character to output stream

Syntax

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If a write error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes
putchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

#include <stdio.h>
int putchar(char c)
© 2005 COSMIC Software Using The Compiler 117

C Library - puts

puts

4

118
Description
Put a text line to output stream

Syntax

Function
puts copies characters from the buffer starting at s to the output stream
and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if a write error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
gets

Notes
puts is packaged in the integer library.

#include <stdio.h>
int puts(char *s)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - rand

rand

Description

Generate pseudo-random number

Syntax

Function
rand computes successive pseudo-random integers in the range
[0, 32767], using a linear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice()

{
return (rand() % 6 + 1);
}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

#include <stdlib.h>
int rand(void)
© 2005 COSMIC Software Using The Compiler 119

C Library - realloc

realloc

4

120
Description
Reallocate space on the heap

Syntax

Function
realloc grows or shrinks the size of the cell pointed to by ptr to the size
specified by nbytes. The contents of the cell will be unchanged up to the
lesser of the new and old sizes. The cell pointer ptr must have been
obtained by an earlier calloc, malloc, or realloc call; otherwise the heap
will become corrupted.

Return Value
realloc returns a pointer to the start of the possibly moved cell if suc-
cessful. Otherwise realloc returns NULL and the cell and ptr are
unchanged. The pointer returned may be assigned to an object of any
type without casting.

Example
To adjust p to be n doubles in size:

p = realloc(p, n * sizeof(double));

See Also
calloc, free, malloc

Notes
realloc is packaged in the integer library.

#include <stdlib.h>
void realloc(void *ptr, unsigned int nbytes)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - sbreak

sbreak

Description

Allocate new memory

Syntax

Function
sbreak modifies the program memory allocation as necessary, to make
available at least size contiguous bytes of new memory, on a storage
boundary adequate for representing any type of data. There is no guar-
antee that successive calls to sbreak will deliver contiguous areas of
memory.

Return Value
sbreak returns a pointer to the start of the new memory if successful;
otherwise the value returned is NULL.

Example
To buy space for an array of symbols:

if (!(p = sbreak(nsyms * sizeof (symbol))))
remark(“not enough memory!”, NULL);

Notes
sbreak is packaged in the integer library.

sbreak is an extension to the ANSI C standard.

void *sbreak(unsigned int size)
© 2005 COSMIC Software Using The Compiler 121

C Library - scanf

scanf

4

122
Description
Read formatted input

Syntax

Function
scanf reads formatted input from the output stream using the format
string at fmt and the arguments specified by ..., as described below.

scanf uses getchar to read each character.

The behavior is unpredictable if there are insufficient argument pointers
for the format. If the format string is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored.

Format Specifiers
The format string may contain:

• any number of spaces, horizontal tabs, and newline characters
which cause input to be read up to the next non-whitespace char-
acter, and

• ordinary characters other than ‘%’ which must match the next
character of the input stream.

Each <conversion specification>, the definition of which follows, con-
sists of the character ‘%’, an optional assignment-suppressing character
‘*’, an optional maximum field width, an optional h, l or L indicating
the size of the receiving object, and a <conversion character>,
described below.

A conversion specification directs the conversion of the next input
field. The result is placed in the object pointed to by the subsequent
argument, unless assignment suppression was indicated by a ‘*’. An

#include <stdio.h>
int scanf(char *fmt,...)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - scanf
input field is a string of non-space characters; it extends to the next con-
flicting character or until the field width, if specified, is exhausted.

The conversion specification indicates the interpretation of the input
field; the corresponding pointer argument must be a restricted type. The
<conversion character> is one of the following:

% - a single % is expected in the input at this point; no assignment
occurs.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

c - a character is expected; the subsequent argument must be of type
pointer to char. The normal behavior (skip over space characters) is
suppressed in this case; to read the next non-space character, use %1s.
If a field width is specified, the corresponding argument must refer to a
character array; the indicated number of characters is read.

d - a decimal integer is expected; the subsequent argument must be a
pointer to integer.

e, f, g - a float is expected; the subsequent argument must be a pointer
to float. The input format for floating point numbers is an optionally
signed sequence of digits, possibly containing a decimal point, followed
by an optional exponent field consisting of an E or e, followed by an
optionally signed integer.

i - an integer is expected; the subsequent argument must be a pointer to
integer. If the input field begins with the characters 0x or 0X, the field is
taken as a hexadecimal integer. If the input field begins with the charac-
ter 0, the field is taken as an octal integer. Otherwise, the input field is
taken as a decimal integer.

n - no input is consumed; the subsequent argument must be an int *
pointer to an integer into which is written the number of characters read
from the input stream so far by this call to scanf.

o - an octal integer is expected; the subsequent argument must be a
pointer to integer.
© 2005 COSMIC Software Using The Compiler 123

C Library - scanf4

124
p - a pointer is expected; the subsequent argument must be a void *
pointer. The format of the input field should be the same as that pro-
duced by the %p conversion of printf. On any input other than a value
printed earlier during the same program execution, the behavior of the
%p conversion is undefined.

s - a character string is expected; the subsequent argument must be a
char * pointer to an array large enough to hold the string and a terminat-
ing NUL, which will be added automatically. The input field is termi-
nated by a space, a horizontal tab, or a newline, which is not part of the
field.

u - an unsigned decimal integer is expected; the subsequent argument
must be a pointer to integer.

x - a hexadecimal integer is expected; a subsequent argument must be a
pointer to integer.

[- a string that is not to be delimited by spaces is expected; the subse-
quent argument must be a char * just as for %s. The left bracket is fol-
lowed by a set of characters and a right bracket; the characters between
the brackets define a set of characters making up the string. If the first
character is not a circumflex ‘^’, the input field consists of all characters
up to the first character that is not in the set between the brackets; if the
first character after the left bracket is a circumflex, the input field con-
sists of all characters up to the first character that is in the set of the
remaining characters between the brackets. A NUL character will be
appended to the input.

The conversion characters d, i, o, u and x may be preceded by l to indi-
cate that the subsequent argument is a pointer to long int rather than a
pointer to int, or by h to indicate that it is a pointer to short int. Simi-
larly, the conversion characters e and f may be preceded by l to indicate
that the subsequent argument is a pointer to double rather than a pointer
to float, or by L to indicate a pointer to long double.

The conversion characters e, g or x may be capitalized. However, the
use of upper case has no effect on the conversion process and both
upper and lower case input is accepted.
© 2005 COSMIC SoftwareUsing The Compiler

C Library - scanf
If conversion terminates on a conflicting input character, that character
is left unread in the input stream. Trailing white space (including a
newline) is left unread unless matched in the control string. The success
of literal matches and suppressed assignments is not directly determina-
ble other than via the %n conversion.

Return Value
scanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if end of file is encountered before the first conflict or conversion.

Example
To be certain of a dubious request:

printf(“are you sure?”);
if (scanf(“%c”, &ans) && (ans == 'Y' || ans == 'y'))

scrog();

See Also
sscanf

Notes
scanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of scanf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot read or manipulate floating point numbers. If your pro-
grams call the integer only version of scanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

If an invalid conversion specifier is encountered, it is ignored.
© 2005 COSMIC Software Using The Compiler 125

C Library - setjmp

setjmp

4

126
Description
Save calling environment

Syntax

Function
setjmp saves the calling environment in env for later use by the
longjmp function.

Since setjmp manipulates the stack, it should never be used except as
the single operand in a switch statement.

Return Value
setjmp returns zero on its initial call, or the argument to a longjmp call
that uses the same env.

Example
To call any event until it returns 0 or 1 and calls longjmp, which will
then start execution at the function event0 or event1:

static jmp_buf ev[2];
switch (setjmp(ev[0]))

{
case 0: /* registered */

break;
default: /* event 0 occurred */

event0();
next();
}

switch (setjmp(ev[1])
{

case 0: /* registered */
break;

default: /* event 1 occurred */
event1();
next();
}

#include <setjmp.h>
int setjmp(jmp_buf_env)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - setjmp
next();
...

next()
{
int i;

for (; ;)
{
i = anyevent();
if (i == 0 || i == 1)

longjmp(ev[i]);
}

}

See Also
longjmp

Notes
setjmp is packaged in the integer library.
© 2005 COSMIC Software Using The Compiler 127

C Library - _sif

_sif

4

128
Description
Set interrupt flag

Syntax

Function
_sif is an inline function allowing to set the interrupt flag by using the
SIF instruction. If an argument is specified, it is evaluated and associ-
ated to a register SIF instruction.

Return Value
_sif returns nothing.

Example
_sif(); produces sif

sif(chan); produces ldw r2,(r1,#2)
sif r2

Notes
_sif is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline void _sif()
© 2005 COSMIC SoftwareUsing The Compiler

C Library - sin

sin

Description

Sin

Syntax

Function
sin computes the sine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of sin is 0.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
cos, tan

Notes
sin is packaged in the floating point library.

#include <math.h>
double sin(double x)
© 2005 COSMIC Software Using The Compiler 129

C Library - sinh

sinh

4

130
Description
Hyperbolic sine

Syntax

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a
double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.iy = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

#include <math.h>
double sinh(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - sprintf

sprintf

Description

Output arguments formatted to buffer

Syntax

Function
sprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiers are invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
int sprintf(char *s, char fmt, ...)
© 2005 COSMIC Software Using The Compiler 131

C Library - sqrt

sqrt

4

132
Description
Real square root

Syntax

Function
sqrt computes the square root of x to full double precision.

Return Value
sqrt returns the nearest internal representation to sqrt(x), expressed as a
double floating value. If x is negative, sqrt returns zero.

Example
To use sqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, lsqrt

Notes
sqrt is packaged in the floating point library.

#include <math.h>
double sqrt(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - srand

srand

Description

Seed pseudo-random number generator

Syntax

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. The initial seed value used by rand and srand is 0.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also
rand

Notes
srand is packaged in the integer library.

#include <stdlib.h>
void srand(unsigned char nseed)
© 2005 COSMIC Software Using The Compiler 133

C Library - sscanf

sscanf

4

134
Description
Read formatted input from a string

Syntax

Function
sscanf reads formatted input from the NUL-terminated string pointed at
by s using the format string at fmt and the arguments specified by ..., in
exactly the same way as scanf. See the description of the scanf function
for information on the format conversion specifiers.

Return Value
sscanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if the end of the string is encountered before the first conflict or
conversion.

See Also
scanf

Notes
sscanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sscanf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sscanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

#include <stdio.h>
int sscanf(char *s, char *fmt, ...)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - _ssem

_ssem

Description

Set a semaphore

Syntax

Function
_ssem is an inline function allowing to set a semaphore given by the
argument, by using the SSEM instruction, thus setting the carry accord-
ing to the semaphore status. When used in an if construct, this function
expands directly to a bcc or bcs instruction. When used in an expres-
sion, it expands in order to build in a register the value 0 or 1 depending
on the carry bit value.

Return Value
_ssem returns 0 or 1 in the a register if such a value is needed.

Example
if (_ssem(2)) produces ssem #2

x = 0; bcc L1
stw r0,(r1,#2)

L1:

sem = _ssem(num); produces ldw r2,(r1,#2)
ssem r2
adc r3,r0,r0

Notes
_ssem is an inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

#include <processor.h>
@inline int _ssem(int)
© 2005 COSMIC Software Using The Compiler 135

C Library - strcat

strcat

4

136
Description
Concatenate strings

Syntax

Function
strcat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to s1.

Return Value
strcat returns s1.

Example
To place the strings “first string, second string” in buf[]:

buf[0] = '\0';
strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

#include <string.h>
char *strcat(char *s1, char *s2)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strchr

strchr

Description

Scan string for first occurrence of character

Syntax

Function
strchr looks for the first occurrence of a specific character c in a NUL
terminated target string s.

Return Value
strchr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To map keystr[]characters into subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

#include <string.h>
char *strchr(char *s1, int c)
© 2005 COSMIC Software Using The Compiler 137

C Library - strcmp

strcmp

4

138
Description
Compare two strings for lexical order

Syntax

Function
strcmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include”:

if (strcmp(buf, “include”) == 0)
doinclude();

See Also
memcmp, strncmp

Notes
strcmp is packaged in the integer library.

#include <string.h>
int strcmp(char *s1, char *s2)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strcpy

strcpy

Description

Copy one string to another

Syntax

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at
by s1. The terminating NUL is also copied.

Return Value
strcpy returns s1.

Example
To make a copy of the string s2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strcpy is packaged in the integer library, and may be implemented as an
inline function.

#include <string.h>
char *strcpy(char *s1, char *s2)
© 2005 COSMIC Software Using The Compiler 139

C Library - strcspn

strcspn

4

140
Description
Find the end of a span of characters in a set

Syntax

Function
strcspn scans the string starting at s1 for the first occurrence of a char-
acter in the string starting at s2. It computes a subscript i such that:

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to some character in the string starting at s2,
which may be its terminating null character.

Return Value
strcspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if none of the characters in s1 are in s2.

Example
To find the start of a decimal constant in a text string:

if (!str[i = strcspn(str, “0123456789+-”)])
printf(“can't find number\n”);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strcspn is packaged in the integer library.

#include <string.h>
unsigned int strcspn(char *s1, char *s2)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strlen

strlen

Description

Find length of a string

Syntax

Function
strlen scans the text string starting at s to determine the number of char-
acters before the terminating NUL.

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library and may be implemented as an
inline function.

#include <string.h>
unsigned int strlen(char *s)
© 2005 COSMIC Software Using The Compiler 141

C Library - strncat

strncat

4

142
Description
Concatenate strings of length n

Syntax

Function
strncat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. n specifies the maximum number of characters to
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to s1.

Return Value
strncat returns s1.

Example
To concatenate the strings “day” and “light”:

strcpy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

#include <string.h>
char *strncat(char *s1, char *s2, unsigned int n)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strncmp

strncmp

Description

Compare two n length strings for lexical order

Syntax

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. n specifies the maximum number of characters to be com-
pared, unless the terminating NUL in s1 or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To check for a particular error message:

if (strncmp(errmsg,
“can't write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

#include <string.h>
int strncmp(char *s1, char *s2, unsigned int n)
© 2005 COSMIC Software Using The Compiler 143

C Library - strncpy

strncpy

4

144
Description
Copy n length string

Syntax

Function
strncpy copies the first n characters starting at location s2 into the
buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy a total of n
characters.

Return Value
strncpy returns s1.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string s2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

#include <string.h>
char *strncpy(char *s1, char *s2, unsigned int n)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strpbrk

strpbrk

Description

Find occurrence in string of character in set

Syntax

Function
strpbrk scans the NUL terminated string starting at s1 for the first
occurrence of a character in the NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in s1 that is also contained
in the set s2, or a NULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “‘{|}~”))
*string = '@';

See Also
memchr, strchr, strcspn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

#include <string.h>
char *strpbrk(char *s1, char *s2)
© 2005 COSMIC Software Using The Compiler 145

C Library - strrchr

strrchr

4

146
Description
Scan string for last occurrence of character

Syntax

Function
strrchr looks for the last occurrence of a specific character c in a NUL
terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches c, or NULL if
none does.

Example
To find a filename within a directory pathname:

if (s = strrchr(“/usr/lib/libc.user”, '/')
++s;

See Also
memchr, strchr, strpbrk, strcspn, strspn

Notes
strrchr is packaged in the integer library.

#include <string.h>
char *strrchr(char *s,int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strspn

strspn

Description

Find the end of a span of characters not in set

Syntax

Function
strspn scans the string starting at s1 for the first occurrence of a charac-
ter not in the string starting at s2. It computes a subscript i such that

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if all of the characters in s1 are in s2.

Example
To check a string for characters other than decimal digits:

if (str[strspn(str, “0123456789”)])
printf(“invalid number\n”);

See Also
memchr, strcspn, strchr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

#include <string.h>
unsigned int strspn(char *s1, char *s2)
© 2005 COSMIC Software Using The Compiler 147

C Library - strstr

strstr

4

148
Description
Scan string for first occurrence of string

Syntax

Function
strstr looks for the first occurrence of a specific string s2 not including
its terminating NUL, in a NUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To look for a keyword in a string:

if (t = strstr(buf, “LIST”))
do_list(t);

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

#include <string.h>
char *strstr(char *s1, char *s2)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strtod

strtod

Description

Convert buffer to double

Syntax

Function
strtod converts the string at nptr into a double. The string is taken as
the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against
overflow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-
able characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = strtod(buf, NULL);

See Also
atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

#include <stdlib.h>
double strtod(char *nptr, char **endptr)
© 2005 COSMIC Software Using The Compiler 149

C Library - strtol

strtol

4

150
Description
Convert buffer to long

Syntax

Function
strtol converts the string at nptr into a long integer. Leading whitespace
is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If base is not zero, characters a-z or A-Z
represents digits in range 10-36. If base is zero, a leading “0x” or “0X”
in the string indicates hexadecimal, a leading “0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “0x” or “0X” is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtol(buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - strtoul

strtoul

Description

Convert buffer to unsigned long

Syntax

Function
strtoul converts the string at nptr into a long integer. Leading
whitespace is skipped and an optional sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
ters a-z or A-Z represents digits in range 10-36. If base is zero, a lead-
ing “0x” or “0X” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If base is 16 and a leading “0x” or “0X” is present, it is skipped before
to convert. If endptr is not a null pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtoul(buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is a macro redefined to strtol.

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,

int base)
© 2005 COSMIC Software Using The Compiler 151

C Library - tan

tan

4

152
Description
Tangent

Syntax

Function
tan computes the tangent of x, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with a large
size may return a meaningless value, i.e. when x/(2 * pi) has no fraction
bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also
cos, sin

Notes
tan is packaged in the floating point library.

#include <math.h>
double tan(double x)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - tanh

tanh

Description

Hyperbolic tangent

Syntax

Function
tanh computes the value of the hyperbolic tangent of x to double preci-
sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as
a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(x);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

#include <math.h>
double tanh(double x)
© 2005 COSMIC Software Using The Compiler 153

C Library - tolower

tolower

4

154
Description
Convert character to lowercase if necessary

Syntax

Function
tolower converts an uppercase letter to its lowercase equivalent, leav-
ing all other characters unmodified.

Return Value
tolower returns the corresponding lowercase letter, or the unchanged
character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 16 + *s - '0';
else

sum = sum * 16 + tolower(*s) + (10 - 'a');

See Also
toupper

Notes
tolower is packaged in the integer library.

#include <ctype.h>
int tolower(int c)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - toupper

toupper

Description

Convert character to uppercase if necessary

Syntax

Function
toupper converts a lowercase letter to its uppercase equivalent, leaving
all other characters unmodified.

Return Value
toupper returns the corresponding uppercase letter, or the unchanged
character.

Example
To convert a character string to uppercase letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

See Also
tolower

Notes
toupper is packaged in the integer library.

#include <ctype.h>
int toupper(int c)
© 2005 COSMIC Software Using The Compiler 155

C Library - va_arg

va_arg

4

156
Description
Get pointer to next argument in list

Syntax

Function
The macro va_arg is an rvalue that computes the value of the next
argument in a variable length argument list. Information on the argu-
ment list is stored in the array data object ap. You must first initialize
ap with the macro va_start, and compute all earlier arguments in the list
by expanding va_arg for each argument.

The type of the next argument is given by the type name type. The type
name must be the same as the type of the next argument. Remember
that the compiler widens an arithmetic argument to int, and converts an
argument of type float to double. You write the type after conversion.
Write int instead of char and double instead of float.

Do not write a type name that contains any parentheses. Use a type def-
inition, if necessary, as in:

typedef int (*pfi)();
/* pointer to function returning int */
...

fun_ptr = va_arg(ap, pfi);
/* get function pointer argument */

Return Value
va_arg expands to an rvalue of type type. Its value is the value of the
next argument. It alters the information stored in ap so that the next
expansion of va_arg accesses the argument following.

Example
To write multiple strings to a file:

#include <stdarg.h>
type va_arg(va_list ap, type)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - va_arg
#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf, ...);
void strput(char *ptr, ...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_end, va_start

Notes
va_arg is a macro declared in the <stdarg.h> header file. You can use
it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2005 COSMIC Software Using The Compiler 157

C Library - va_end

va_end

4

158
Description
Stop accessing values in an argument list

Syntax

Function
va_end is a macro which you must expand if you expand the macro
va_start within a function that contains a variable length argument list.
Information on the argument list is stored in the data object designated
by ap. Designate the same data object in both va_start and va_end.

You expand va_end after you have accessed all argument values with
the macro va_arg, before your program returns from the function that
contains the variable length argument list. After you expand va_end, do
not expand va_arg with the same ap. You need not expand va_arg
within the function that contains the variable length argument list.

You must write an expansion of va_end as an expression statement con-
taining a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_end expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();

strput(pf, “This is one string\n”, \
“and this is another...\n”, (char *)0);

}

#include <stdarg.h>
void va_end(va_list ap)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - va_end
void strput(FILE *pf, ...);
void strput(char *ptr, ...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_start

Notes
va_end is a macro declared in the <stdarg.h> header file. You can use
it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2005 COSMIC Software Using The Compiler 159

C Library - va_start

va_start

4

160
Description
Start accessing values in an argument list

Syntax

Function
va_start is a macro which you must expand before you expand the
macro va_arg. It initializes the information stored in the data object
designated by ap. The argument parmN must be the identifier you
declare as the name of the last specified argument in the variable length
argument list for the function. In the function prototype for the function,
parmN is the argument name you write just before the , ...

The type of parmN must be one of the types assumed by an argument
passed in the absence of a prototype. Its type must not be float or char.
Also, parmN cannot have storage class register.

If you expand va_start, you must expand the macro va_end before your
program returns from the function containing the variable length argu-
ment list.

You must write an expansion of va_start as an expression statement
containing a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_start expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{

#include <stdarg.h>
void va_start(va_list ap, parmN)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - va_start
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf, ...);
void strput(char *ptr, ...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_end

Notes
va_start is a macro declared in the <stdarg.h> header file. You can use
it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2005 COSMIC Software Using The Compiler 161

C Library - vprintf

vprintf

4

162
Description
Output arguments formatted to stdout

Syntax

Function
vprintf writes formatted to the output stream using the format string at
fmt and the arguments specified by pointer ap, in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. The va_start macro must be executed
before to call the vprintf function.

vprintf uses putchar to output each character.

Return Value
vprintf returns the numbers of characters transmitted.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vprintf(fmt, aptr);

See Also
printf, vsprintf

Notes
vprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
#include <stdarg.h>
int vsprintf(char*s, char fmt, va_list ap)
© 2005 COSMIC SoftwareUsing The Compiler

C Library - vsprintf

vsprintf

Description

Output arguments formatted to buffer

Syntax

Function
vsprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by pointer ap, in exactly the
same way as printf. See the description of the printf function for infor-
mation on the format conversion specifiers. A NUL character is written
after the last character in the buffer. The va_start macro must be exe-
cuted before to call the vsprintf function.

Return Value
vsprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vsprintf(buf, fmt, aptr);

See Also
printf, vprintf

Notes
vsprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vsprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vsprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
#include <stdarg.h>
int vsprintf(char*s, char fmt, va_list ap)
© 2005 COSMIC Software Using The Compiler 163

CHAPTER

5

Using The Assembler
The caxgate cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler calls caxgate to
assemble your code automatically, unless specified otherwise. caxgate
generates also listings if requested. This chapter includes the following
sections:

• Invoking caxgate

• Object File

• Listings

• Assembly Language Syntax

• Branch Optimization

• C Style Directives

• Assembler Directives
© 2005 COSMIC Software Using The Assembler 165

Invoking caxgate5

166
Invoking caxgate
caxgate accepts the following command line options, each of which is
described in detail below:

-a map all sections to absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement is too large. This opti-
mization also applies to jump and jump to subroutines
instructions.

-c produce cross-reference information. The cross-reference -
information will be added at the end of the listing file; this
option enforces the -l option.

caxgate [options] <files>
-a absolute assembler
-b do not optimizes branches
-c output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# fill byte value
-h* include header
-i*> include path
-l output a listing
+l* listing file name
-m accept old syntax
-mi accept label syntax
-o* output file name
-pe all equates public
-pl keep local symbol
-p all symbols public
-u undefined in listing
-v be verbose
-x include line debug info
-xp no path in debug info
-xx include full debug info
© 2005 COSMIC SoftwareUsing The Assembler

Invoking caxgate
-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of dis-
playing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output a title in listing (date, file name, page). By default,
no title is output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default is 0.

-h* include the file specified by * before starting assembly. It
is equivalent to an include directive in each source file.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is a directory name and is not
ended by any directory separator character.

-l create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the ‘.ls’
extension.

+l* create a listing file in the text file *. If both -l and +l are
specified, the listing file name is given by the +l option.

-m accept the old Motorola syntax.

-mi accept label that is not ended with a ‘:’ character.

-o* write object code to the file *. If no file name is specified,
the output file name is derived from the input file name, by
replacing the rightmost extension in the input file name
with the character ‘o’. For example, if the input file name
is prog.s, the default output file name is prog.o.
© 2005 COSMIC Software Using The Assembler 167

Object File5

168
-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef direc-
tive for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-p mark all defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-u produce an error message in the listing file for all occur-
rence of an undefined symbol. This option enforces the -l
option.

-v display the name of each file which is processed.

-x add line debug information to the object file.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data. This option disables the -p option as
only public or used labels are selected.

Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, caxgate generates an object file. If requested by the
-l or -c options, caxgate generates a listing file even if errors are
detected. Such lines are followed by an error message in the listing.

Object File
The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.
© 2005 COSMIC SoftwareUsing The Assembler

Listings
Listings
The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source_line>

where <address> is the hexadecimal relocatable address where the
<source_line> has been assembled, <generated_code> is the hexadec-
imal representation of the object code generated by the assembler and
<source_line> is the original source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Several directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.

A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.
© 2005 COSMIC Software Using The Assembler 169

Assembly Language Syntax5

170
Assembly Language Syntax
The assembler caxgate conforms to the Motorola syntax as described in
the document Assembly Language Input Standard. The assembly lan-
guage consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or

; comment

where ‘:’ indicates the end of a label and ‘;’ defines the start of a com-
ment. The end of a line terminates a comment. The command field may
be an instruction, a directive or a macro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-
guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
caxgate recognizes the following instructions:

adc bfext blo cpch or stw
add bffo bls csem orh sub
addh bfins blt csl orl subh
addl bfinsi bmi csr par subl
and bfinsx bne jal rol tfr
andh bge bpl ldb ror xnor
andl bgt bra ldh rts xnorh
asl bhi brk ldl sbc xnorl
asr bhs bvc ldw sex
bcc bith bvs lsl sif
bcs bitl cmp lsr ssem
beq ble cmpl nop stb

The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following example demonstrates
the accepted syntax:
© 2005 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
sif ; implicit
csem #1 ; immediate
csem r2 ; register
add r1,r2,r3 ; register
ldw r2,(r3) ; indexed
ldw r2,(r3,#2) ; indexed
ldw r2,(r3,r4) ; indexed
ldw r2,(r3+) ; indexed
ldw r2,(r3,-r4) ; indexed
bne loop ; relative

The assembler chooses the smallest addressing mode where several
solutions are possible. It also allows 16-bit constants to be used on 16-
bit instructions (add, and, or ...) and expands them in one or two instruc-
tions operating selectively on the high and/or low byte.

For an exact description of the above instructions, refer to the
Motorola’s XGATE Reference Manual.

Labels
A source line may begin with a label. Some directives require a label on
the same line, otherwise this field is optional. A label must begin with
an alphabetic character, the underscore character ‘_’ or the period char-
acter ‘.’. It is continued by alphabetic (A-Z or a-z) or numeric (0,9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names are reserved and cannot be used as
labels.

data1:dc.b $56
c_reg:ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a multiply defined
symbol error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.

semwait:macro
\@loop:

ssem \1
bcc @loop
endm
© 2005 COSMIC Software Using The Assembler 171

Assembly Language Syntax5

172
Temporary Labels
The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such a label is composed by a dec-
imal number immediately followed by a ‘$’ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined
error message.

1$: sub r1,#1
bne 1$

2$: sub r2,#1
bne 2$

Temporary labels do not appear in the symbol table or the cross refer-
ence list.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

function1:
10$: sub r2,#1

bne 10$
add r3,#1
local

10$: sub r2,#1
bne 10$
add r3,#1
rts

function2:
10$: sub r2,#1

bne 10$
add r3,#1
rts

Constants
The assembler accepts numeric constants and string constants.
Numeric constants are expressed in different bases depending on a
prefix character as follows:
© 2005 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

The suffix letter can be entered uppercase or lowercase. Hexadecimal
numbers still need to start with a digit.

String constants are a series of printable characters between single or
double quote characters:

’This is a string’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for a data initialization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b ’0123456789ABCDEF’
start:cmpl r2,#’A’ ; ASCII value of ’A’

Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

Number Base

10 decimal (no prefix)

%1010 binary

@12 octal

$A hexadecimal

Suffix Base

D, d or none decimal (no prefix)

B or b binary

Q or q octal

0AH or 0Ah hexadecimal
© 2005 COSMIC Software Using The Assembler 173

Assembly Language Syntax5

174
A special label written ‘*’ is used to represent the current location
address. Note that when ‘*’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operators is:

+ addition
- subtraction (negation)
* multiplication
/ division
% remainder (modulus)
& bitwise and
| bitwise or
^ bitwise exclusive or
~ bitwise complement
<< left shift
>> right shift
== equality
!= difference
< less than
<= less than or equal
> greater than
>= greater than or equal
&& logical and
|| logical or
! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
label1 - label2

An expression may also be constructed with a special operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

The difference of two relocatable labels is valid only if both symbols are
not external symbols, and are defined in the same section.

NOTE
© 2005 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These special operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operators if allowed.

high - extract the upper byte of the 16-bit expression

low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. This is used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction is a list of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macro begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
ldw r2,r0 ; prepare MSW
cmp r3,#0 ; test sign
bpl \@pos ; if not positive
sub r2,#1 ; invert MSW

\@pos:
endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of r3 into r2. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

ldw r3,(r1,#4) ; load LSW
signex ; expand macro
stw r2,(r1,#2) ; store result

The resulting code will be the same as if the following code had been
written:
© 2005 COSMIC Software Using The Assembler 175

Assembly Language Syntax5

176
ldw r3,(r1,#4) ; load LSW
ldw r2,r0 ; prepare MSW
cmp r3,#0 ; test sign
bpl pos ; if not positive
sub r2,#1 ; invert MSW

pos: stw r2,(r1,#2) ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,... \9, \A,...\Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by a list of argu-
ment named, each prefixed by a \ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a \ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
alphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using numbered syntax:

signex:macro ; sign extension
ldw \1,r0 ; prepare MSW
cmp \2,#0 ; test sign
bpl \@pos ; if not positive
sub \1,#1 ; invert MSW

\@pos:
endm ; end of macro

And called:

signex r2,r3 ; sign extend word
© 2005 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
This macro may also be written using the named syntax:

signex:macro \out,\in ; sign extension
ldw \out,r0 ; prepare MSW
cmp \in,#0 ; test sign
bpl \@pos ; if not positive
sub \out,#1 ; invert MSW

\@pos:
endm ; end of macro

The form of a macro call is:

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion is a single letter which may represent the size of the operands and
the result. For example:

table:macro
dc.\0 1,2,3,4
endm

When invoking the macro:

table.b

will generate a table of byte:

dc.b 1,2,3,4

When invoking the macro:

table.w

will generate a table of word:

dc.w 1,2,3,4

The special parameter * is replaced by a sequence containing the list of
all the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or a repeatl directive.

 <name>[.<ext>] [<arguments>]
© 2005 COSMIC Software Using The Assembler 177

Assembly Language Syntax5

178
The directive mexit may be used at any time to stop the macro expan-
sion. It is generally used in conjunction with a conditional directive.

A macro call may be used within another macro definition. A macro
definition cannot contain another macro definition.

If a listing is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
all the expanded lines are printed with all the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives
A conditional directive allows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ldw r2,#message
jal r6
endif

If the symbol debug is equal to 1, the next two lines are assembled.
Otherwise they are skipped.

if offset > 255 ; if offset too large
addptr offset ; call a macro
else ; otherwise
addl r2,#offset ; adjust R2 register
endif

If the symbol offset is larger than 255, the macro addptr is expanded
with offset as argument, otherwise the addl instruction is directly
assembled.
© 2005 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If a listing is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

xdata: section ; defines data section
xtext: section ; defines text section
start:

ldw r2,#value ; fills text section
jal r6
switch xdata ; use now data section

value:
dc.b 1,2,3 ; fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name is too long, it is simply trun-
cated without any error message.

xref var

Includes
The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (‘;’ for MSDOS and ‘:’ for UNIX).
© 2005 COSMIC Software Using The Assembler 179

Branch Optimization5

180
The -h option can specify a file to be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.

Branch Optimization
Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset is limited to the range [-512,511]. If such an
instruction cannot be encoded properly, the assembler will replace it by
a sequence containing an inverted branch to the next location followed
immediately by a jump to the original target address. The assembler
keep track of the last replacement for each label, so if a long branch has
already been expanded for the same label at a location close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the already existing jump instruction to
the specified label.

beq farlabel becomes bne *+5
bra farlabel

The sequence ldw + jal instructions can be replaced by a shorter
sequence for the second silicon version, if the target function is in the
range of a bra instruction. In order to allow the assembler to automati-
cally choose the best coding, a special syntax is provided, specifying
both register and target address:

jal r6,_func

will be expanded as:

tfr r6,pc or ldw r6,#_func
bra _func jal r6

depending on the location of the _func symbol.
© 2005 COSMIC SoftwareUsing The Assembler

C Style Directives
C Style Directives
The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the
equivalence with the standard directives:

Assembler Directives
This section consists of quick reference descriptions for each of the cax-
gate assembler directives.

C Style Assembler Style

#include “file” include “file”

#define label expression label: equ expression

#define label label: equ 1

#if expression if expression

#ifdef label ifdef label

#ifndef label ifndef label

#else else

#endif endif

#error “message” fail “message”

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol
equal to a numerical value.

NOTE
© 2005 COSMIC Software Using The Assembler 181

Assembler Directives - align

align

5

182
Description
Align the next instruction on a given boundary

Syntax

Function
The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value>, is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also
even

align <expression>, [<fill_value>]
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - base

base

Description

Define the default base for numerical constants

Syntax

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal base is used
by default. When another base is selected, it is no more possible to enter
decimal constants.

Example
base 8 ; select octal base
ldl r2,#377 ; load $FF

base <expression>
© 2005 COSMIC Software Using The Assembler 183

Assembler Directives - bsct

bsct

5

184
Description
Switch to the predefined .bsct section.

Syntax

Function
The bsct directive switches input to a section named .bsct, also known
as the zero page section. The assembler will automatically select the
direct addressing mode when referencing an object defined in the .bsct
section.

Example
bsct

c_reg:
ds.b 1

Notes
This directive is not relevant for the XGATE assembler.

See Also
section, switch

bsct
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - clist

clist

Description

Turn listing of conditionally excluded code on or off.

Syntax

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lines which are not
assembled as a consequence of if, else and endif directives.

See Also
if, else, endif

clist [on|off]
© 2005 COSMIC Software Using The Assembler 185

Assembler Directives - dc

dc

5

186
Description
Allocate constant(s)

Syntax

Function
The dc directive allocates and initializes storage for constants. If
<expression> is a string constant, one byte is allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will allocate one byte per <expression>.

The dc.w directive will allocate one word per <expression>.

The dc.l directive will allocate one long word per <expression>.

Example
digit:dc.b 10,'0123456789'

dc.w digit

Note
For compatibility with previous assemblers, the directive fcb is alias to
dc.b, and the directive fdb is alias to dc.w.

dc[.size] <expression>[,<expression>...]
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - dcb

dcb

Description

Allocate constant block

Syntax

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size area is the number of the specified value <count> of
<size>. The memory area can be initialized with the <value> specified.

The dcb and dcb.b directives will allocate one byte per <count>.

The dcb.w directive will allocate one word per <count>.

The dcb.l directive will allocate one long word per <count>.

Example
digit: dcb.b 10,5 ; allocate 10 bytes,

; all initialized to 5

dcb.<size> <count>,<value>
© 2005 COSMIC Software Using The Assembler 187

Assembler Directives - dlist

dlist

5

188
Description
Turn listing of debug directives on or off.

Syntax

Function
The dlist directive controls the visibility of any debug directives in the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

dlist [on|off]
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - ds

ds

Description

Allocate variable(s)

Syntax

Function
The ds directive allocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The ds and ds.b directives will allocate <space> bytes.

The ds.w directive will allocate <space> words.

The ds.l directive will allocate <space> long words.

Example
ptlec: ds.b 2
ptecr: ds.b 2
chrbuf: ds.w 128

Note
For compatibility with previous assemblers, the directive rmb is alias
to ds.b.

ds[.size] <space>
© 2005 COSMIC Software Using The Assembler 189

Assembler Directives - else

else

5

190
Description
Conditional assembly

Syntax

Function
The else directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previous if directive.

Example
if offset != 1 ; if offset too large

addptr offset ; call a macro
else ; otherwise

add r2,#1 ; increment R2 register
endif

Note
The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

if <expression>
instructions
else
instructions
endif
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - elsec

elsec

Description

Conditional assembly

Syntax

Function
The elsec directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previous if directive.

Example
ifge offset-255 ; if offset too large

addptr offset ; call a macro
elsec ; otherwise

addl r2,#offset ; increment R2 register
endc

Note
The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

if <expression>
instructions
elsec
instructions
endc
© 2005 COSMIC Software Using The Assembler 191

Assembler Directives - end

end

5

192
Description
Stop the assembly

Syntax

Function
The end directive stops the assembly process. Any statements follow-
ing it are ignored. If the end directive is encountered in an included file,
it will stop the assembly process for the included file only.

end
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - endc

endc

Description

End conditional assembly

Syntax

Function
The endc directive closes an if<cc> or elsec conditional directive. The
conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or
elsec directive.

Example
ifge offset-255 ; if offset too large

addptr offset ; call a macro
elsec ; otherwise

addl r2,#offset ; increment R2 register
endc

Note
The endc and endif directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if<cc>, elsec, clist, end

if<cc> <expression>
instructions
endc
© 2005 COSMIC Software Using The Assembler 193

Assembler Directives - endif

endif

5

194
Description
End conditional assembly

Syntax

Function
The endif directive closes an if or else conditional directive. The condi-
tional status reverts to the one existing before entering the if directive.
The endif directive applies to the closest previous if or else directive.

Example
if offset != 1 ; if offset too large

addptr offset ; call a macro
else ; otherwise

add r2,#1 ; increment R2 register
endif

Note
The endif and endc directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if, else, clist

if <expression>
instructions
endif
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - endm

endm

Description

End macro definition

Syntax

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of
; a string in a byte prior to the string

ltext:macro
ds.b \@2 - \@1

\@1:
ds.b \1

\@2:
endm

See Also
mexit, macro

label: macro
 <macro_body>
 endm
© 2005 COSMIC Software Using The Assembler 195

Assembler Directives - endr

endr

5

196
Description
End repeat section

Syntax

Function
The endr directive is used to terminate repeat sections.

Example
; shift a value n times
asln: macro

repeat \1
lsl r2,#1
endr
endm

; use of above macro
asln 10 ;shift 10 times

See Also
repeat

repeat
<macro_body>
endr
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - equ

equ

Description

Give a permanent value to a symbol

Syntax

Function
The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value altered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

Example
false:equ 0 ; initialize these values
true: equ 1
tablen:equ tabfin - tabsta ;compute table length
nul: equ $0 ; define strings for ascii characters
soh: equ $1
stx: equ $2
etx: equ $3
eot: equ $4
enq: equ $5

See Also
lit, set

label: equ <expression>
© 2005 COSMIC Software Using The Assembler 197

Assembler Directives - even

even

5

198
Description
Assemble next byte at the next even address relative to the start of a
section.

Syntax

Function
The even directive forces the next assembled byte to the next even
address. If a byte is added to the section, it is set to the value of the fill-
ing byte defined by the -f option. If <fill_value>, is specified, it will be
used locally as the filling byte, instead of the one specified by the -f
option.

Example
vowtab: dc.b 'aeiou'

 even ; ensure aligned at even address
tentab: dc.w 1, 10, 100, 1000

even [<fill_value>]
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - fail

fail

Description

Generate error message.

Syntax

Function
The fail directive outputs “string” as an error message. No output file is
produced as this directive creates an assembly error. fail is generally
used with conditional directives.

Example
Max: equ 512

ifge value - Max
fail “Value too large”

fail "string"
© 2005 COSMIC Software Using The Assembler 199

Assembler Directives - if

if

5

200
Description
Conditional assembly

Syntax

Function
The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive applies to
the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
if offset != 1 ; if offset too large

addptr offset ; call a macro
else ; otherwise

add r2,#1 ; increment R2 register
endif

See Also
else, endif, clist

if <expression> or if <expression>
instructions instructions
endif else

instructions
endif
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifc

ifc

Description

Conditional assembly

Syntax

Function
The ifc, else and endc directives allow conditional assembly. The ifc
directive is followed by a constant expression. If <string1> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument

ldl r2,#45 ; load 45
elsec ; otherwise...

ldl r2,#0
endc

See Also
elsec, endc, clist

ifc <string1>,<string2> orifc <string1>,<string2>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC Software Using The Assembler 201

Assembler Directives - ifdef

ifdef

5

202
Description
Conditional assembly

Syntax

Function
The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directive is followed by a label <label>. If <label> is defined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be a forward reference.

If the ifdef statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifdef offset1 ; if offset1 is defined

addptr offset1 ; call a macro
elsec ; otherwise

addptr offset2 ; call a macro
endif

See Also
ifndef, elsec, endc, clist

ifdef <label> or ifdef <label>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifeq

ifeq

Description

Conditional assembly

Syntax

Function
The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul

cmp r2,#0 ; just test it
elsec ; otherwise

add r2,#offset ; add to accu
endc

See Also
elsec, endc, clist

ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC Software Using The Assembler 203

Assembler Directives - ifge

ifge

5

204
Description
Conditional assembly

Syntax

Function
The ifge, elsec and endc directives allow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifge expression is greater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifge offset-255 ; if offset too large

addptr offset ; call a macro
elsec ; otherwise

addl r2,#offset ; increment R2 register
endc

See Also
elsec, endc, clist

ifge <expression> or ifge <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifgt

ifgt

Description

Conditional assembly

Syntax

Function
The ifgt, elsec and endc directives allow conditional assembly. The ifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifgt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifgt offset-255 ; if offset too large

addptr offset ; call a macro
elsec ; otherwise

addl r2,#offset ; increment R2 register
endc

See Also
elsec, endc, clist

ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC Software Using The Assembler 205

Assembler Directives - ifle

ifle

5

206
Description
Conditional assembly

Syntax

Function
The ifle, elsec and endc directives allow conditional assembly. The ifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifle statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifle offset-255 ; if offset small enough

addl r2,#offset ; increment R2 register
elsec ; otherwise

addptr offset ; call a macro
endc

See Also
elsec, endc, clist

ifle <expression> or ifle <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - iflt

iflt

Description

Conditional assembly

Syntax

Function
The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
iflt offset-255 ; if offset small enough

addl r2,#offset ; increment R2 register
elsec ; otherwise

addptr offset ; call a macro
endc

See Also
elsec, endc, clist

iflt <expression> or iflt <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC Software Using The Assembler 207

Assembler Directives - ifndef

ifndef

5

208
Description
Conditional assembly

Syntax

Function
The ifndef, else and endc directives allow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be a forward reference.

If the ifndef statement ends with an elsec directive, the expression
result is inverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifndef offset1 ; if offset1 is not defined

addptr offset2 ; call a macro
elsec ; otherwise

addptr offset1 ; call a macro
endif

See Also
ifdef, elsec, endc, clist

ifndef <label> or ifndef <label>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - ifne

ifne

Description

Conditional assembly

Syntax

Function
The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul

add r2,#offset ; add to register
elsec ; otherwise

cmp r2,#0 ; just test it
endc

See Also
elsec, endc, clist

ifne <expression> or ifne <expression>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC Software Using The Assembler 209

Assembler Directives - ifnc

ifnc

5

210
Description
Conditional assembly

Syntax

Function
The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <string1> and
<string2> are differents, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifnc “hello”, \2

addptr offset ; call a macro
else ; otherwise

add r2,#1 ; increment R2 register
endif

See Also
elsec, endc, clist

ifnc <string1>,string2> orifnc <string1><string2>
instructions instructions
endc elsec

instructions
endc
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - include

include

Description

Include text from another text file

Syntax

Function
The include directive causes the assembler to switch its input to the
specified filename until end of file is reached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/lowercase characters should be respected.

Example
include “datstr” ; use data structure library
include “bldstd” ; use current build standard
include “matmac” ; use maths macros
include “ports82” ; use ports definition

include "filename"
© 2005 COSMIC Software Using The Assembler 211

Assembler Directives - list

list

5

212
Description
Turn on listing during assembly.

Syntax

Function
The list directive controls the parts of the program which will be written
to the listing file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

list
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - lit

lit

Description

Give a text equivalent to a symbol

Syntax

Function
The lit directive is used to associate a text string to a symbol (label).
This symbol is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: lit “#5”

ldl r2,nbr ; expand as ‘ldl r2,#5’

See Also
equ, set

label: lit “string”
© 2005 COSMIC Software Using The Assembler 213

Assembler Directives - local

local

5

214
Description
Create a new local block

Syntax

Function
The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard labels or local directives or a combination of the two.

Example
var: ds.b 1
var2: ds.b 1
function1:
10$: cmp r2,r1

beq 10$
sub r2,r2,r1

local
10$: cmp r1,r2

beq 10$
sub r1,r1,r2
rts

local
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - macro

macro

Description

Define a macro

Syntax

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name already used as a macro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a \ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form \1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a \ character. The macro variable
name can also be enclosed by parenthesis to avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The special parameter * is expanded to the full list of passed arguments
separated by commas.

label: macro <argument_list>
<macro_body>
endm
© 2005 COSMIC Software Using The Assembler 215

Assembler Directives - macro5

216
The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. For more
information, see “Macro Instructions” on page 175.

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@’ may be inserted in a label in order to allow a unique
name expansion. The sequence ‘\@’ will be replaced by a unique
number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; in a byte in front of the string using numbered syntax
;
ltext:macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as first operand
\@2:

endm

; define a macro that places the length of a string
; in a byte in front of the string using named syntax
;
ltext:macro \string

dc.b \@2-\@1
\@1:

dc.b \string ; text given as first operand
\@2:

endm

See Also
endm, mexit
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - messg

messg

Description

Send a message out to STDOUT

Syntax

Function
The messg directive is used to send a message out to the host system’s
standard output (STDOUT).

Example
messg “Test code for debug”

ldl r2,#2
stw r2,(r1,#4)

See Also
title

messg “<text>”
messg ‘<text>’
© 2005 COSMIC Software Using The Assembler 217

Assembler Directives - mexit

mexit

5

218
Description
Terminate a macro definition

Syntax

Function
The mexit directive is used to exit from a macro definition before the
endm directive is reached. mexit is usually placed after a conditional
assembly directive.

Example
ctrace:macro

if tflag == 0
mexit
endif
jal \1
endm

See Also
endm, macro

mexit
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - mlist

mlist

Description

Turn on or off listing of macro expansion.

Syntax

Function
The mlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it is ignored otherwise.

The parts of the program to be listed are the lines which are assembled
in a macro expansion.

See Also
macro

mlist [on|off]
© 2005 COSMIC Software Using The Assembler 219

Assembler Directives - nolist

nolist

5

220
Description
Turn off listing.

Syntax

Function
The nolist directive controls the parts of the program which will be not
written to the listing file until an end or a list directive is encountered. It
is effective if and only if listings are requested; it is ignored otherwise.

See Also
list

Note
For compatibility with previous assemblers, the directive nol is alias to
nolist.

nolist
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - nopage

nopage

Description

Disable pagination in the listing file

Syntax

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It is ignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

nopage
© 2005 COSMIC Software Using The Assembler 221

Assembler Directives - offset

offset

5

222
Description
Creates absolute symbols

Syntax

Function
The offset directive starts an absolute section which will only be used to
define symbols, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example
offset 0

next:
ds.b 2

buffer:
ds.b 80

switch .text
size:

ldw r2,(r1,#next) ; ends the offset section

offset <expresion>
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - org

org

Description

Sets the location counter to an offset from the beginning of a section.

Syntax

Function
<expression> must be a valid absolute expression. It must not contain
any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

org <expresion>
© 2005 COSMIC Software Using The Assembler 223

Assembler Directives - page

page

5

224
Description
Start a new page in the listing file

Syntax

Function
The page directive causes a formfeed to be inserted in the listing output
if pagination is enabled by either a title directive or the -ft option.

Example
xref mult, div
page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

page
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - plen

plen

Description

Specify the number of lines per pages in the listing file

Syntax

Function
The plen directive causes <page_length> lines to be output per page in
the listing output if pagination is enabled by either a title directive or
the -ft option. If the number of lines already output on the current page
is less than <page_length>, then the new page length becomes effec-
tive with <page_length>. If the number of lines already output on the
current page is greater than or equal to <page_length>, a new page will
be started and the new page length is set to <page_length>.

Example
plen 58

See Also
page, title

plen <page_length>
© 2005 COSMIC Software Using The Assembler 225

Assembler Directives - repeat

repeat

5

226
Description
Repeat a list of lines a number of times

Syntax

Function
The repeat directive is used to cause the assembler to repeat the follow-
ing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the expression
operand. The repeat directive is equivalent to a macro definition fol-
lowed by the same number of calls on that macro.

Example
; shift a value n times
asln: macro

repeat \1
lsl r2,#1
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

repeat <expression>
repeat_body

endr
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - repeatl

repeatl

Description

Repeat a list of lines a number of times

Syntax

Function
The repeatl directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl
directive is equivalent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a \ character. In such a case, the repeat argument is
specified by its name prefixed by a \ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been
reached.

Example
; test a value using the numbered syntax
repeatl 1,2,3

add r2,#\1 ; add to register
endr
end

or
; test a value using the named syntax
repeatl \count,1,2,3

add r2,#\count ; add to register
endr
end

repeatl <arguments>
repeat_body

endr
© 2005 COSMIC Software Using The Assembler 227

Assembler Directives - repeatl5

228
will both produce:

 2 ; test a value
 9 0000 ab01 add r2,#1 ; add to register
 9 0002 ab02 add r2,#2 ; add to register
 9 0004 ab03 add r2,#3 ; add to register
10 end

See Also
endr, repeat,rexit
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - restore

restore

Description

Restore saved section

Syntax

Function
The restore directive is used to restore the last saved section. This is
equivalent to a switch to the saved section.

Example
switch.bss
var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: cmp r2,r1

beq 10$
sub r2,r2,r1

function2:
10$: cmp r1,r2

bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldw r1,r2
end

See Also
save, section

restore
© 2005 COSMIC Software Using The Assembler 229

Assembler Directives - rexit

rexit

5

230
Description
Terminate a repeat definition

Syntax

Function
The rexit directive is used to exit from a repeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times

asln: macro
repeat \1
if \1 == 0

rexit
endif
lsl r2,#1
endr
endm

; use of above macro
asln 5

See Also
endr, repeat, repeatl

rexit
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - save

save

Description

Save section

Syntax

Function
The save directive is used to save the current section so it may be
restored later in the source file.

Example
switch .bss
var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: cmp r2,r1

beq 10$
sub r2,r2,r1

function2:
10$: cmp r1,r2

bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldw r1,r2
end

See Also
restore, section

save
© 2005 COSMIC Software Using The Assembler 231

Assembler Directives - section

section

5

232
Description
Define a new section

Syntax

Function
The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
already existing section. If no name and no attributes are specified to
the section, the default is to defined the section as a text section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a ‘+’ character or not
prefixed, or deleted if prefixed by a ‘-’ character. Several attributes may
be specified separated by commas. Attribute keywords are:

Example
CODE: section .text ; section of text
lab1: ds.b 5
DATA: section .data ; section of data
lab2: ds.b 6

switch CODE
lab3: ds.b 7

switch DATA
lab4: ds.b 8

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance

even enforce even starting address and size

zpage enforce 8 bit relocation

long enforce 32 bit relocation

bit bit section

<section_name>: section [<attributes>]
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - section
This will place lab1 and then lab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame: section .bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

.bit: section +zpage,+even,-hilo

The .bit section is declared using 8 bit relocation, with an even align-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, a labelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: section1 ; define section 1
nop

.ram: section2 ; define section 2
dc.b 1
section1 ; switch back to section 1
nop

It is still possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct
© 2005 COSMIC Software Using The Assembler 233

Assembler Directives - set

set

5

234
Description
Give a resetable value to a symbol

Syntax

Function
The set directive allows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembled.

Example
OFST: set 10

See Also
equ, lit

label: set <expression>
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - spc

spc

Description

Insert a number of blank lines before the next statement in the listing
file.

Syntax

Function
The spc directive causes <num_lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing is requested, 5 blank lines will be inserted, then the title will be
output.

See Also
title

spc <num_lines>
© 2005 COSMIC Software Using The Assembler 235

Assembler Directives - switch

switch

5

236
Description
Place code into a section.

Syntax

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be already defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch .bss

buffer:ds.b 512
xdef buffer

This will place buffer into the .bss section.

See Also
section, bsct

switch <section_name>
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - tabs

tabs

Description

Specify the number of spaces for a tab character in the listing file

Syntax

Function
The tabs directive sets the number of spaces to be substituted to the tab
character in the listing output. The minimum value of <tab_size> is 0
and the maximum value is 128.

Example
tabs 6

tabs <tab_size>
© 2005 COSMIC Software Using The Assembler 237

Assembler Directives - title

title

5

238
Description
Define default header

Syntax

Function
The title directive is used to enable the listing pagination and to set the
default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
messg, page, plen

Note
For compatibility with previous assemblers, the directive ttl is alias to
title.

title "name"
© 2005 COSMIC SoftwareUsing The Assembler

Assembler Directives - xdef

xdef

Description

Declare a variable to be visible

Syntax

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
allow for usage of common headers.

Example
xdef sqrt ; allow sqrt to be called

; from another module
sqrt: ; routine to return a square root

; of a number >= zero

See Also
xref

xdef identifier[,identifier...]
© 2005 COSMIC Software Using The Assembler 239

Assembler Directives - xref

xref

5

240
Description
Declare symbol as being defined elsewhere

Syntax

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-
tion.

Example
xref otherprog
xref.b zpage ; is in .bsct section

See Also
xdef

xref[.b] identifier[,identifier...]
© 2005 COSMIC SoftwareUsing The Assembler

CHAPTER

6

Using The Linker
As the XGATE compiler is an add-on to the S12X compiler, the linker
is not provided. Please report to chapter 6 of the COSMIC “C Cross
Compiler Users’ Guide for S12X ”.

This chapter explains only the specific needs required by the XGATE
features. It also provides an example linker command line that shows
you how to perform some useful operations. This chapter includes the
following sections:

• Linking XGATE Objects

• Linking Library Objects
© 2005 COSMIC Software Using The Linker 241

Linking XGATE Objects6

242
Linking XGATE Objects
XGATE code and data are produced in specific sections which have no
default behaviour. Each section must be explicitly located. The XGATE
processor accesses memory with a different coding than the S12X. The
-b and -o options will be used whenever necessary to distinguish
addresses in the XGATE range from addresses in the S12X range.
Some areas will be shared by both processor (mainly data objects), the -
pr option (physical relocation) will be used to tell the linker to relocate
addresses using the -b value instead of the -o one.

The XGATE code is designed to be executed from the S12X ram space.
It has to be created as initialized segments in order to be handled by the
automatic data initialization feature of the crtsx.s startup file which
must be linked in the S12X part of the application.

The linker command file should contain such directives before loading
XGATE object files:

1 # XGATE definitions
2 +seg .xtext -b0xfb000 -m0x2000 -pr -n.xtext -id# code
3 +seg .xconst -a.xtext -pr -n.xconst -id# xgate constants
4 +seg .xdata -b0xfd000 -o0x1000 -m0x1000 -pr -n.xdata -id
5 +seg .xbss -a.xdata -pr -n.xbss
6 +def __extext=pend(.xconst) # end of xgate code
7 +def __sxdata=pstart(.xdata)# start of shared data
8 +def __exdata=pend(.xbss) # end of shared data
9 # enter object files for XGATE here
10 xvector.o # xgate vectors
11 +pri
12 libi.xgt # xgate C library (if needed)
13 +new
14 libm.xgt # xgate library
15 +spc .xbss=64 # xgate stack
16 +def __xstack=@.xbss # if needed

The code and constant segments, on lines 2 and 3, are declared with
only -b option because they do not need to be accessed by the S12X
code. The -id option must be specified in order to allow the initializa-
tion process.
© 2005 COSMIC SoftwareUsing The Linker

Linking Library Objects
The data segments, on lines 4 and 5, are using the both -b and -o
options, matching respectively the XGATE address value and the S12X
address value. The -id option is specified only on the initialized data
segment.

The symbol definitions on lines 6 to 8 can be used to initialize the ram
protection registers allowing to mark which areas are accessed only by
XGATE, or only by S12X or by both.

The integer library, if necessary, must be linked in a private region
using the +pri and +new directives in order to avoid any conflict with
the S12X library functions. The machine library is using non conflict-
ing names and does not need such a precaution.

The symbol __xstack created on line 16 is used to indicate where the
XGATE stack is starting. The stack space is created here by the space
reservation on line 15, but there are other possibilities for such a symbol
to be created (absolute value, C object address,...).

Linking Library Objects
The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it’s modules to avoid
unresolved references. The standard ANSI libraries are provided in two
versions to provide the level of support that your application needs.
This can save a significant amount of code space and execution time
when full ANSI single precision floating point support is not needed.
The first letter after “lib” in each library file denotes the library type (f
for single precision, and i for integer). See below.

libf.xgt Floating Point Library. This library is used for applications
where only single precision floating point support is
needed. Link this library before the other libraries when
only single precision floats are used.

libi.xgt Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can still be
used for arithmetic but not with the standard library. Link
© 2005 COSMIC Software Using The Linker 243

Linking Library Objects6

244
this library before the other libraries when only integer
libraries are needed.

The XGATE integer library does not implement all the functions availa-
ble in the S12X integer library.

NOTE
© 2005 COSMIC SoftwareUsing The Linker

CHAPTER

7

Debugging Support
As the XGATE compiler is an add-on to the S12X compiler, the debug-
ging support utilities are not provided. Please report to chapter 7 of the
COSMIC “C Cross Compiler Users’ Guide for S12X”.
© 2005 COSMIC Software Debugging Support 245

CHAPTER

8

Programming Support
As the XGATE compiler is an add-on to the S12X compiler, the pro-
gramming support utilities are not provided. Please report to chapter 8
of the COSMIC “C Cross Compiler Users’ Guide for S12X “.
© 2005 COSMIC Software Programming Support 247

APPENDIX

A

Compiler Error
Messages

This appendix lists the error messages that the compiler may generate in
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

• Parser (cpxgate) Error Messages

• Code Generator (cgxgate) Error Messages

• Assembler (caxgate) Error Messages

• Linker (clnk) Error Messages
© 2005 COSMIC Software Compiler Error Messages 249

Parser (cpxgate) Error MessagesA

250
Parser (cpxgate) Error Messages
<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - a function or a variable is never defined

FlexLM <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asm is larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a # operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified

bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a ## operator in
a #define macro is missing

bad #asm directive - a #asm directive is not entered at a valid declara-
tion or instruction boundary

bad #define syntax - a #define is not followed by an identifier

bad #elif expression - a #elif is not followed by a constant expression

bad #else - a #else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a #endasm directive is not closing a previous
#asm directive
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
bad #endif - a #endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name

bad #ifndef syntax - extra characters are found after the symbol name

bad #include syntax - extra characters are found after the file name

bad #pragma section directive - syntax for the #pragma section direc-
tive is incorrect

bad #pragma space directive - syntax for the #pragma space directive
is incorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - the first argument passed to _asm is miss-
ing or is not a character string

bad alias expression - alias definition is not a valid expression

bad alias value - alias definition is not a constant expression

bad bit number - a bit number is not a constant between 0 and 7

bad character <character> - <character> is not part of a legal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by a right parenthesis

bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments
© 2005 COSMIC Software Compiler Error Messages 251

Parser (cpxgate) Error MessagesA

252
bad macro argument - a parameter in a #define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad return type for inline function - inline function must be declared
with void return type

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol defintion - the syntax of a symbol defined by the -d option
on the command line is not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing

can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a #undef has been attempted on a prede-
fined macro

compare out of range - a comparison is detected as beeing always true
or always false (+strict)
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
const assignment - a const object is specified as left operand of an
assignment operator

constant assignement in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - a default label has been specified more than once in
a switch statement

embedded usage of tag name <name> - a structure/union definition
contains a reference to itself.

enum size unknow - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in a real constant is
too large for the target encoding

float value too large for integer cast - a float constant is too large to be
casted in an integer

hexadecimal constant too large - an hexadecimal constant is too large
to be represented on an integer

illegal storage class - storage class is not legal in this context

illegal type specification - type specification is not recognizable

illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)
© 2005 COSMIC Software Compiler Error Messages 253

Parser (cpxgate) Error MessagesA

254
implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structures must be
compatible for assignment

incomplete #elif expression - a #elif is followed by an incomplete
expression
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
incomplete #if expression - a #if is followed by an incomplete expres-
sion

incomplete type - structure type is not followed by a tag or definition

incomplete type for debug information - a structure or union is not
completely defined in a file compiled with the debug option set

integer constant too large - a decimal constant is too large to be repre-
sented on an integer

invalid case - a case label has been specified outside of a switch state-
ment

invalid default - a default label has been specified outside of a switch
statement

invalid ? test expression - the first expression of a ternary operator
(? :) is not a testable expression

invalid address operand - the “address of” operator has been applied
to a register variable or an rvalue expression

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object

invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with a dimension
which is not a constant expression

invalid binary number - the syntax for a binary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initiliazing a bit variable must be
scalar
© 2005 COSMIC Software Compiler Error Messages 255

Parser (cpxgate) Error MessagesA

256
invalid bitfield size - a bitfield has been declared with a size larger than
its type size

invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value

invalid continue - a continue statement may be used only in while, for,
or do statements

invalid do test type - the expression of a do ... while() instruction is not
a testable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
invalid function member - a function has been declared within a struc-
ture or an union

invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to a function

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - the initialization of a local object is incom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference

invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted
© 2005 COSMIC Software Compiler Error Messages 257

Parser (cpxgate) Error MessagesA

258
invalid shift count type - the right expression of a shift operator is not
an integer

invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid storage class - storage class is not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator

invalid switch test type - the expression of a switch () instruction must
be of integer type

invalid typedef usage - a typedef identifier is used in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid while test type - the expression of a while () instruction is not a
testable expression

missing ## argument in macro <name> - an argument of a ## opera-
tor in a #define macro is missing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a ‘(’ does not have a balancing ‘)’ in a
defined operator

missing ; in argument declaration - the declaration of a function argu-
ment does not end with ‘;’

missing ; in local declaration - the declaration of a local variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with ‘;’

missing ? test expression - the test expression is missing in a ternary
operator (? :)
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
missing _asm() argument - the _asm function needs at least one argu-
ment

missing argument - the number of arguments in the actual function call
is less than that of its prototype declaration

missing argument for macro <name> - a macro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument is missing in a pro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - a do ... while () instruction has been speci-
fied with an empty while expression

missing enumeration member - a member of an enumeration is not an
identifier

missing explicit return - a return statement is not ending a non-void
function (+strict)

missing exponent in real - a floating point constant has an empty expo-
nent after the ’e’ or ’E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a #include directive is used, but no file
name is present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=’ character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=’ character not followed by an expression
© 2005 COSMIC Software Compiler Error Messages 259

Parser (cpxgate) Error MessagesA

260
missing local name - a local variable has been declared without a name

missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - a simple return statement is used in a non-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a ‘while’ is expected and not found

missing while test expression - an expression in a while instruction is
needed, but none is present

missing : - a ‘:’ is expected and not found

missing ; - a ‘;’ is expected and not found

missing (- a ‘(’ is expected and not found

missing) - a ‘)’ is expected and not found

missing] - a ‘]’ is expected and not found

missing { - a ‘{’ is expected and not found

missing } - a ‘}’ is expected and not found
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
missing } in enum definition - an enumeration list does not end with a
‘}’ character

missing } in struct/union definition - a structure or union member list
does not end with a ‘}’ character

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is already
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is already declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - a typedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an already
declared object

redefined label <name> - a label is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - a tag is specified more than once in a given
scope

repeated type specification - the same type modifier occurs more than
once in a type specification

scalar type required - type must be integer, floating, or pointer
© 2005 COSMIC Software Compiler Error Messages 261

Parser (cpxgate) Error MessagesA

262
size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
already specified modifier

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read

token overflow - an expression is too complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initialization is completed for a given object
before initializer list is exhausted

too many spaces modifiers - too many different names for ‘@’ modifi-
ers are used

truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

unbalanced ’ - a character constant does not end with a simple quote

unbalanced “ - a string constant does not end with a double quote

<name> undefined - an undeclared identifier appears in an expression

undefined label <name> - a label is never defined

undefined struct/union - a structure or union is used and is never
defined
© 2005 COSMIC SoftwareCompiler Error Messages

Parser (cpxgate) Error Messages
unexpected end of file - last declaration is incomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

zero divide - a divide by zero was detected

zero modulus - a modulus by zero was detected
© 2005 COSMIC Software Compiler Error Messages 263

Code Generator (cgxgate) Error MessagesA

264
Code Generator (cgxgate) Error Messages
bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

invalid indirect call - a function has been called through a pointer with
more than one char or int argument, or is returning a structure.

redefined space - the version of cp you used to compile your program
is incompatible with cg.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file

PANIC ! bad output file - cannot create output file

PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COSMIC.
© 2005 COSMIC SoftwareCompiler Error Messages

Assembler (caxgate) Error Messages
Assembler (caxgate) Error Messages
The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving a file name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant is too long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment

bad constant - a constant uses illegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators
© 2005 COSMIC Software Compiler Error Messages 265

Assembler (caxgate) Error MessagesA

266
bad string constant - a character constant does not end with a single or
double quote

bad symbol name: <name> - an expected symbol is not an identifier

can't create <name> - the file <name> cannot be opened for writing

can't open <name> - the file <name> cannot be opened for reading

can't open source <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset

illegal size - the size of a ds directive is negative or zero

missing label - a label must be specified for this directive

missing operand - operand is expected for this instruction

missing register - a register is expected for this instruction

missing string - a character string is expected for this directive

relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared

syntax error - an unexpected identifier or operator has been found

too many arguments - a macro has been invoked with more than 9
arguments
© 2005 COSMIC SoftwareCompiler Error Messages

Assembler (caxgate) Error Messages
too many back tokens - an expression is too complex to be evaluated

unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - a divide by zero has been detected
© 2005 COSMIC Software Compiler Error Messages 267

Linker (clnk) Error MessagesA

268
Linker (clnk) Error Messages
-a not allowed with -b or -o - the after option cannot be specified if
any start address is specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a +def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected relocation informa-
tion.

bad section name in +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

bank crossing call - a jsr instruction has been used to enter a banked
function, either from a different bank or from a common area.

can't create map file <file> - map file cannot be created.

can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.

file already linked - an input file has already been processed by the
linker.
© 2005 COSMIC SoftwareCompiler Error Messages

Linker (clnk) Error Messages
function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.

function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.

incomplete +seg directive - the +seg directive syntax is not correct.

incomplete +spc directive - the +spc directive syntax is not correct.

init segment cannot be initialized - the host segment for initialization
cannot be itself initialized.

invalid @ argument - the syntax of an optional input file is not correct.

invalid -i option - the -i directive is followed by an unexpected charac-
ter.

missing command file - a link command file must be specified on the
command line.

missing output file - the -o option must be specified.

missing '=' in +def - the +def directive syntax is not correct.

missing '=' in +spc <segment> - the +spc directive syntax is not cor-
rect.

named segment <segment> not defined - a segment name does not
match already existing segments.

no default placement for segment <segment> - a segment is missing
-a or -b option.

prefixed symbol <name> in conflict - a symbol beginning by ‘f_’ (for
a banked function) also exists without the ‘f’ prefix.

read error - an input object file is corrupted
© 2005 COSMIC Software Compiler Error Messages 269

Linker (clnk) Error MessagesA

270
segment <segment> and <segment> overlap - a segment is overlap-
ping an other segment.

segment <segment> size overflow - the size of a segment is larger than
the maximum value allowed by the -m option.

shared segment not empty - the host segment for shared data is not
empty and cannot be used for allocation.

symbol <symbol> multiply defined - an object file attempts to rede-
fine a symbol.

symbol <symbol> not defined - a symbol has been referenced but
never defined.

unexpected bank location - an interrupt function or a function access-
ing the PPAGE register is located in a bank.

unknown directive - a directive name has not been recognized as a
linker directive.
© 2005 COSMIC SoftwareCompiler Error Messages

APPENDIX

B

Modifying Compiler
Operation

This chapter tells you how to modify compiler operation by making
changes to the standard configuration file. It also explains how to create
your own programmable options” which you can use to modify com-
piler operation from the cxxgate.cxf.
© 2005 COSMIC Software Modifying Compiler Operation 271

The Configuration FileB

272
The Configuration File
The configuration file is designed to define the default options and
behaviour of the compiler passes. It will also allow the definition of
programmable options thus simplifying the compiler configuration. A
configuration file contains a list of options similar to the ones accepted
for the compiler driver utility cxxgate.

These options are described in Chapter 4, “Using The Compiler”.
There are two differences: the option -f cannot be specified in a config-
uration file, and the extra -m option has been added to allow the defini-
tion of a programmable compiler option, as described in the next
paragraph.

The contents of the configuration file cxxgate.cxf as provided by the
default installation appears below:

CONFIGURATION FILE FOR XGATE COMPILER
Copyright (c) 2004 by COSMIC Software
#
-pu # unsigned char
-i c:\cx32\hxgate # include path
#
-m debug:x # debug: produce debug info
-m nobss:,bss # nobss: do not use bss
-m nocst:,ct # nocst: constant in text section
-m nofr:,nf # nofr: no interrupt argument frame
-m proto:p # proto: enable prototype checking
-m rev:rb # rev: reverse bit field order
-m v1:,sv1 # v1: first version of silicon
-m warn:w1 # warn: enable warnings
© 2005 COSMIC SoftwareModifying Compiler Operation

Changing the Default Options
The following command line:

in combination with the above configuration file directs the cxxgate
compiler to execute the following commands:

cpxgate -o \2.cx1 -u -i\cx32\hxgate hello.c
cgxgate -o \2.cx2 \2.cx1
coxgate -o \2.cx1 \2.cx2
caxgate -o hello.o -i\cx32\hxgate \2.cx1

Changing the Default Options
To change the combination of options that the compiler will use, edit
the configuration file and add your specific options using the -p (for the
parser), -g (for the code generator), -o (for the optimizer) and -a (for the
assembler) options. If you specify an invalid option or combination of
options, compilation will not proceed beyond the step where the error
occurred. You may define up to 60 such options.

Creating Your Own Options
To create a programmable option, edit the configuration file and define
the parametrable option with the -m* option. The string * has the fol-
lowing format:

name:popt,gopt,oopt,aopt,exclude...

The first field defines the option name and must be ended by a colon
character ‘:’. The four next fields describe the effect of this option on
the four passes of the compiler, respectively the parser, the generator,
the optimizer and the assembler. These fields are separated by a comma
character ‘,’. If no specific option is needed on a pass, the field has to be
specified empty. The remaining fields, if specified, describe a exclusive
relationship with other defined options. If two exclusive options are
specified on the command line, the compiler will stop with an error
message. You may define up to 20 programmable options. At least one
field has to be specified. Empty fields need to be specified only if a use-
ful field has to be entered after.

cxxgate hello.c
© 2005 COSMIC Software Modifying Compiler Operation 273

ExampleB

274
In the following example:

-m dl1:l,dl1,,,dl2# dl1: line option 1
-m dl2:l,dl2,,,dl1# dl1: line option 2

the two options dl1 and dl2 are defined. If the option +dl1 is specified
on the compiler command line, the specific option -l will be used for the
parser and the specific option -dl1 will be used for the code generator.
No specific option will be used for the optimizer and for the assembler.
The option dl1 is also declared to be exclusive with the option dl2,
meaning that dl1 and dl2 will not be allowed together on the compiler
command line. The option dl2 is defined in the same way.

Example
The following command line

in combination with the previous configuration file directs the cxxgate
compiler to execute the following commands:

cpxgate -o \2.cx1 -u -i\cx32\hxgate hello.c
cgxgate -o \2.cx2 -bss \2.cx1
coxgate -o \2.cx1 \2.cx2
caxgate -o hello.o -i\cx32\hxgate \2.cx1

cxxgate +nobss hello.c
© 2005 COSMIC SoftwareModifying Compiler Operation

APPENDIX

C

XGATE Machine
Library

This appendix describes each of the functions in the Machine Library
(libm). These functions provide the interface between the XGATE
microcontroller hardware and the functions required by the code gener-
ator. They are described in reference form, and listed alphabetically.

Function Listing
x_fadd: float addition
x_fcmp: float comparison
x_fdiv: float division
x_fmul: float multiplication
x_fsub: float substraction
x_ftol2: float to long conversion in R2/R3 registers
x_ftol4: float to long conversion in R4/R5 registers
x_idiv: integer division
x_imul: integer multiplication
x_jitab: int direct switch
x_jltab: long switch
x_jtab: integer switch
x_ldiv: long divide
x_lmul: long multiplication
© 2005 COSMIC Software XGATE Machine Library 275

Function ListingC

276
x_ltof2: long to floatconversion in R2/R3 registers
x_ltof4: long to float conversion in R4/R5 registers
x_ludv: long unsigned divide
x_udiv: integer unsigned division
x_ultof2: unsigned long to floatconversion in R2/R3 registers
x_ultof4: unsigned long to float conversion in R4/R5 registers
© 2005 COSMIC SoftwareXGATE Machine Library

APPENDIX

D

Compiler Passes
The information contained in this appendix is of interest to those users
who want to modify the default operation of the cross compiler by
changing the configuration file that the cxxgate compiler uses to con-
trol the compilation process.

This appendix describes each of the passes of the compiler:

cpxgate the parser

cgxgate the code generator

coxgate the assembly language optimizer
© 2005 COSMIC Software Compiler Passes 277

The cpxgate ParserD

278
The cpxgate Parser
cpxgate is the parser used by the C compiler to expand #defines,
#includes, and other directives signalled by a #, parse the resulting text,
and outputs a sequential file of flow graphs and parse trees suitable for
input to the code generator cgxgate.

Command Line Options
cpxgate accepts the following options, each of which is described in
detail below:

-ad enable #define expansion inside inline assembly code
between #asm and #endasm directives. By default, #define
symbols are expanded only in the C code.

cpxgate [options] file
-ad expand defines in assembly
-c99 c99 type behaviour
-ck extra type checkings
-cp no constant propagation
-d*> define symbol=value
-e run preprocessor only
+e* error file name
-h*> include header
-i*> include path
-l output line information
-m# model configuration
-nc no const replacement
-ne no enum optimization
-np allow pointer narrowing
-o* output file name
-p need prototypes
-rb reverse bitfield order
-s do not reorder locals
-sa strict ANSI conformance
-u plain char is unsigned
-w# enable warnings
-xd debug info for data
-xp no path in debug info
-xx extended debug info
-x output debug info
© 2005 COSMIC SoftwareCompiler Passes

The cpxgate Parser
-c99 authorize the repetition of the const and volatile modifiers
in the declaration either directly or indirectly in the type-
def.

-ck direct the compiler to enforce stronger type checking.

-cp disable the constant propagation optimization. By default,
when a variable is assigned with a constant, any subse-
quent access to that variable is replaced by the constant
itself until the variable is modified or a flow break is
encountered (function call, loop, label ...).

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e run preprocessor only. cpxgate only outputs lines of text.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-h*> include files before to start the compiler process. You can
specify up to 60 files.

-i*> specify include path. You can specify up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l output line number information for listing or debug.

-m# the value # is used to configure the parser behaviour. It is a
two bytes value, the upper byte specifies the default space
for variables, and the lower byte specifies the default space
for functions. A space byte is the or’ed value between a
size specifier and several optional other specifiers. The
allowed size specifiers are:

0x10 @tiny
© 2005 COSMIC Software Compiler Passes 279

The cpxgate ParserD

280
Allowed optionals specifiers are:

Note that all the combinations are not significant for all the
target processors.

-nc do not replace an access to an initialized const object by its
value. By default, the usage of a const object whose value
is known is replaced by its constant value.

-ne do not optimize size of enum variables. By default, the
compiler selects the smallest integer type by checking the
range of the declared enum members. This mechanism
does not allow uncomplete enum declaration. When the
-ne option is selected, all enum variables are allocated as
int variables, thus allowing uncomplete declarations, as the
knowledge of all the members is no more necessary to
choose the proper integer type.

-np allow pointer narrowing. By default, the compiler refuses
to cast the pointer into any smaller object. This option
should be used carefully as such conversions are truncating
addresses.

-o* write the output to the file *. Default is STDOUT for out-
put if -e is specified. Otherwise, an output file name is
required.

-p enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

0x20 @near

0x30 @far

0x02 @pack

0x04 @nostack
© 2005 COSMIC SoftwareCompiler Passes

The cpxgate Parser
-rb reverse the bitfield fill order. By default, bitfields are filled
from less significant bit (LSB) to most significant bit
(MSB). If this option is specified, filling works from most
significant bit to less significant bit.

-s do not reorder local variables. By default, the compiler
sorts the local variables of a function in order to allocate
the most used variables as close as possible to the frame
pointer. This allows to use the shortest addressing modes
for the most used variables.

-sa enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This option also disables the enum
size optimization (-ne).

-u take a plain char to be of type unsigned char, not signed
char. This also affects in the same way strings constants.

-w# enable warnings if # is greater or equal to 0. By default,
warnings are disabled.

-x generate debugging information for use by the cross
debugger or some other debugger or in-circuit emulator.
The default is to generate no debugging information.

-xd add debug information in the object file only for data
objects, hiding any function.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data.

Return Status
cpxgate returns success if it produces no error diagnostics.

Example
cpxgate is usually invoked before cgxgate the code generator, as in:
© 2005 COSMIC Software Compiler Passes 281

The cpxgate ParserD

282
cpxgate -o \2.cx1 -u -i \cosmic\hxgate file.c
cgxgate -o \2.cx2 \2.cx1
© 2005 COSMIC SoftwareCompiler Passes

The cgxgate Code Generator
The cgxgate Code Generator
cgxgate is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from cpxgate and outputs
a sequential file of assembly language statements.

As much as possible, the compiler generates freestanding code, but, for
those operations which cannot be done compactly, it generates inline
calls to a set of machine-dependent runtime library routines.

Command Line Options
cgxgate accepts the following options, each of which is described in
detail below:

-a optimize _asm code. By default, the assembly code
inserted by a _asm call is left unchanged by the optimizer.

-bss inhibit generating code into the bss section.

-ct output constant in the .text section. By default, the com-
piler outputs literals and constants in the .const section.

-dl# produce line number information. # must be either ‘1’ or
‘2’. Line number information can be produced in two
ways: 1) function name and line number is obtained by

cgxgate [options] file

-a optimize _asm code
-bss do not use bss
-ct constants in code
-dl# output line information
+e* error file name
-f full source display
-l output listing
-na do not xdef alias name
-nf no frame argument
-no do not use optimizer
-o* output file name
-st* user stack name
-sv# silicon version
-v verbose
© 2005 COSMIC Software Compiler Passes 283

The cgxgate Code GeneratorD

284
specifying -dl1; 2) file name and line number is obtained
by specifying -dl2. All information is coded in symbols
that are in the debug symbol table.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f merge all C source lines of functions producing code into
the C and Assembly listing. By default, only C lines actu-
ally producing assembly code are shown in the listing.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-nf uses R1 as the only argument of interrupt functions. By
default, R1 is handled as a frame pointer and allows sev-
eral arguments to be passed to interrupt functions.

-no do not produce special directives for the post-optimizer.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-st* specify the symbol name of the stack. This symbol is usu-
ally defined in the linker command file. The default stack
pointer symbol name is __xstack.

-sv# specify the silicon version of the target processor. Default
value is 2.

-v When this option is set, each function name is send to
STDERR when cgxgate starts processing it.

Return Status
cgxgate returns success if it produces no diagnostics.

Example
cgxgate usually follows cpxgate as follows:
© 2005 COSMIC SoftwareCompiler Passes

The cgxgate Code Generator
cpxgate -o \2.cx1 -u -i\cosmic\hxgate file.c
cgxgate -o \2.cx2 \2.cx1
© 2005 COSMIC Software Compiler Passes 285

The coxgate Assembly Language OptimizerD

286
The coxgate Assembly Language Optimizer
coxgate is the code optimizing pass of the C compiler. It reads source
files of XGATE assembly language source code, as generated by the
cgxgate code generator, and writes assembly language statements. cox-
gate is a peephole optimizer; it works by checking lines function by
function for specific patterns. If the patterns are present, coxgate
replaces the lines where the patterns occur with an optimized line or set
of lines. It repeatedly checks replaced patterns for further optimizations
until no more are possible. It deals with redundant load/store opera-
tions, constants, stack handling, and other operations.

Command Line Options
coxgate accepts the following options, each of which is described in
detail below:

-c leave removed instructions as comments in the output file.

-d* specify a list of codes allowing specific optimizations
functions to be selectively disabled.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-v write a log of modifications to STDERR. This displays the
number of removed instructions followed by the number of
modified instructions.

If <file> is present, it is used as the input file instead of the default
STDIN.

coxgate [options] <file>
-c keep original lines as comments
-d* disable specific optimizations
-o* output file name
-v print efficiency statistics
© 2005 COSMIC SoftwareCompiler Passes

The coxgate Assembly Language Optimizer
Disabling Optimization
When using the optimizer with the -c option, lines which are changed or
removed are kept in the assembly source as comment, followed by a
code composed with a letter and a digit, identifying the internal func-
tion which performs the optimization. If an optimization appears to do
something wrong, it is possible to disable selectively that function by
specifying its code with the -d option. Several functions can be disabled
by specifying a list of codes without any whitespaces. The code letter
can be enter both lower or uppercase.

Return Status
coxgate returns success if it produces no diagnostics.

Example
coxgate is usually invoked after cgxgate as follows:

cpxgate -o \2.cx1 -u -i\cosmic\hxgate file.c
cgxgate -o \2.cx2 \2.cx1
coxgate -o file.s \2.cx2
© 2005 COSMIC Software Compiler Passes 287

Index
Symbols
#asm

directive 278
#asm directive 30
#define

replacement in assembly 31
#endasm

directive 278
#endasm directive 30
#pragma asm directive 30
#pragma endasm directive 30
.const

output section 283
.xbss

section 27
.xconst

section 38
.xdata

section 27
.xtext

section 38
@interrupt

qualifier 34
__xstack

symbol 19, 34, 243, 284
symbol value 34

_asm 51
argument string size 31
assembly sequence 32
code optimization 283
lowercase mnemonics 32
return type 33

uppercase mnemonics 32
_asm() function 55
_bffo function 65
_carry function 67
_csem function 71
_par function 110
_sif function 128
_ssem function 135

Numerics
8-bit precision,operation 10

A
abort function 56
abs function 57
absolute

map section 166
path name 281
section,org 223

absolute addresses 28
absolute section 232
absolute value, find 57
acos function 58
address

extension,page 175
align directive 182
Arccosine 58
Arcsine 59
Arctangent 60
Arctangent of y/x 61
argument

output format 112
Index 1

widening 156
asin function 59
assembler

branch shortening 180
C style directives 181
code inline 31
conditional branch range 180
conditional directive 178
create listing file 167
cross-reference 169
environment symbol 179
error for undefined symbol 168
expression 173
generate

listing file 168
object file 168
label 171
macro

directive 175
endm directive 175
instruction 175
operator set 174
sections 179
switch directive 179

assembly language
code optimizer 286

atan function 60
atan2 function 61
atof function 62
atoi function 63
atol function 64

B
bank

page operator 175
base directive 183
bitfield

compiler reverse option 48
filling 281
filling order 48
reverse order 281

bsct directive 184

buffer to double 62
buffer to integer 63
buffer to long 64

C
C interface

to assembly language 38
C library

floating point functions 52
integer functions 51
package 51

C source
lines merging 284

calling environment 99
calloc function 66
ceil function 68
char

signed 281
unsigned 281

characters, replace 145
clist directive 185, 200, 202, 203, 204,

205, 206, 207, 208, 209, 210
code generator

compiler pass 283
error log file 284

code optimizer
compiler pass 286

compiler
ANSI checking 281
assembler 9
assembler option specification 45
C preprocessor and language parser 8
code generation option specification

46
code generator 8
code optimization 10
code optimizer 8
combination of options 273
command line option 44
configuration file 272
configuration file specification 46
constant in code section 48
2 Index

create assembler file only 47
default behavior 44
default configuration file 46
default file names 49
default operations 277
default options 44, 272
driver 4
error file path specification 46
error log file 46
error message 44
exclusive options 273
flags 6
generate error 249
generate error file 50
generate listing 50
include path definition 47
invoke 44
listing file 47
listing file path specification 46
name 44
object file path specification 46
optimizer option specification 47
options 44
options request 44
parser option specification 47
predefined option selection 47
preprocessed file only 47
produce debug information 48
programmable option 272, 273
specific options 4
specify options 45
temporary files path 47
type checking 279
user-defined preprocessor symbol 46
verbose 47
verbose mode 16
widen to int 156

configuration file
predefined options 47

const
qualifier 25

constant

in .text section 283
numeric 172
prefix character 172
string 172
string character 173
suffix character 173

control character 84
convert 62, 63, 64
copy from one buffer to another 105, 106
cos function 69
cosh function 70
cosine 69
cross-reference

information 166
output 17

D
data

const type 26
initalized 27
volatile type 25

data representation
@tiny pointers 42
float and double 42
long int,32 bit pointer 42
short int,16 bit pointer 42

dc directive 186
dcb directive 187
debug information

add line 168
adding 281
label 168
no prefix 168

debug symbol
in object file 168

debugging information
generate 281

default
bitfield order 281
branch optimization 166
output file 167

div function 72
Index 3

dlist directive 188
ds directive 189

E
else directive 190, 191, 194, 200, 202,

208
end directive 192
end5 directive 196
endc directive 202, 208
endif directive 190, 193, 194, 200
endm directive 195, 215, 218, 230
endr 226, 227
enum

size optimization 280
equ directive 197, 234
error

assembler log file 167
file name 50
message 10
message list 249
multiply defined symbol 171

even directive 198
exit 73
exp function 74
expression

evaluation 175
high 175
low 175
page 175

F
fabs function 75
fail directive 199
fill

byte 167, 223
filling byte 189, 198
find 61
floating point library 51
Floating Point Library Functions 52
floor function 76
fmod function 77
format

specifiers 112
formatted arguments, output to stdout 112
formatted string, conversion specifica-

tions 112
fraction and integer from double, extract

109
free function 78
frexp function 79
function

@inline modifier 36
enforce prototype declaration 48,

280
prototype declaration 48, 280
returning int 54

G
generate

.xbss section 38

.xconst section 38

.xdata section 38

.xtext section 38
listing file 17
output files 15

getchar function 80
gets function 81

H
header files 53
heap

allocate space 101
free space 78

heap space 66
-help option 6

I
IEEE Floating Point Standard 42
if

directive 178
if directive 190, 194, 200
if directive 193
ifc directive 201
ifdef directive 202
4 Index

ifeq directive 203
ifge directive 204
ifgt directive 205
ifle directive 206
iflt directive 207
ifnc directive 210
ifndef directive 208
ifne directive 209
include

assembler directive 179
assembly file 167
define path 167
file before 279
module 243
path specification 279
specify path 279

include directive 211
inline

#pragma directive 30
assembly code 31
assembly instruction 30
block inside a function 30
block outside a function 30
function 36
header function 53
with _asm function 31, 32
with pragma sequences 30

inline function
_bffo 37
_carry 37
_csem 37
_par 36
_sif 36
_ssem 37

input
read 122
read from string 134

input/output 26, 29
input/output registers 29
integer

library 243
interrupt

handler 34
handler address 35
return sequence 34
vector 35

isalnum function 82
isalpha function 83
iscntrl function 84
isdigit function 85
isgraph function 86
islower function 87
isprint function 88
ispunct function 89
isqrt function 90
isspace function 91
isupper function 92
isxdigit function 93

L
label

temporary,local directive 172
labs function 94
ldexp function 95
ldiv function 96
library

file 243
floating point 51
integer 51, 243
machine 51
single precision 243
Standard ANSI 243
version 243

line number
information 283

link
relocatable file 17

link command file 18
linker

clnk 9
list directive 212
listing

absolute information 169
file location 21
Index 5

interspersed C and assembly file 16
stream 169

lit directive 213
local

assembler directive 214
labels 33

local variable
reorder 281

log function 97
log10 function 98
logarithm 97
longjmp function 99

M
macro

argument 176
directive 215
expansion 31
internal labels 171
named syntax 177
named syntax, example 216
numbered syntax 176
numbered syntax, example 216
parameter 176
special parameter \# 176
special parameter * 177
special parameter \0 177, 216

malloc function 101
max function 102
memchr function 103
memcmp function 104
memcpy function 105
memmove function 106
memory

allocate 121
memory location 28
memory mapped I/O 28
memory mapped I/O port 29
memset function 107
messg directive 217
mexit directive 216, 218
min function 108

mlist directive 219
modf function 109
Motorola

assembler syntax 170
old syntax option 167

N
natural 97
nolist directive 220
nopage directive 221

O
object

file location 21
relocatable file output 168

object code output 168
offset

assembler directive 222
start absolute section 222

optimization
disable selectively 287
keep line 287
specific code 286

optimizer
disable 47

org directive 223
output

formatted argument to buffer 162,
163

listing line number 279
to buffer, formatted argument 131

P
page

value 175
page directive 224
parser

behaviour 279
compiler pass 278
error log file 279

phase angle of a vector 61
Plain pointers 42
6 Index

plen directive 225
pointer

narrow 280
positive integer 68
pow function 111
prefix

_ character 38
filename 281

preprocessor
#define 278
#include 278
run only 279

printf function 112
pseudo-random number, generate 119
pseudo-random number, seed 133
putchar function 117
puts function 118

R
rand function 119
realloc function 120
relocation

physical 242
repeat directive 226
repeatl directive 227
restore 99
restore directive 229
rexit directive 227, 230
ROM 28
round to 68

S
save directive 231
sbreak function 121
scanf function 122
section

.xbss 18, 27

.xconst 17

.xdata 18, 27

.xtext 17, 27
curly braces,initiliazed data 27
name 27, 179

parenthesis,code 27
pragma definition 27
pragma directive 28
square brackets, uninitialized data 27
user defined 27
xconst 27

section directive 232
sections

default 27
predefined 27

set directive 234
setjmp function 126
silicon

first 48
second 48

sin function 129
sinh function 130
space

for function 279
for variable 279

space allocate 66
space, reallocate on the heap 120
spc directive 235
sprintf function 131
sqrt function 132
square root

unsigned int compute 90
unsigned long int compute 100

srand function 133
sscanf function 134
stack

free space 78
symbol name 284

standard ANSI libraries 243
strcat function 136
strchr function 137
strcmp function 138
strcpy function 139
strcspn function 140
strings, copy n length 144
strlen function 141
strncat function 142
Index 7

strncmp function 143
strncpy function 144
strpbrk function 145
strrchr function 146
strspn function 147
strstr function 148
strtod function 149
strtol function 150
strtoul function 151
suffix

assembly file 44
C file 44

switch directive 236
symbol

user-defined 279

T
tabs directive 237
tan function 152
tangent, compute 152
tanh function 153
test for 84
title directive 238
tolower function 154
toupper function 155

U
uninitialized variables 48
unreachable code

eliminate 10

V
va_arg macro 156
va_end macro 158
va_start macro 160
variable

reorder local 281
variable length argument list 158, 160
volatile

data 25
memory mapped control registers 25
qualifier 25

using keyword 25
vprintf function 162
vsprintf function 163

W
warnings 48, 281

X
x to the y power, compute 111
xdef directive 239, 240
XGATE

addressing mode 170
mnemonics 170

xref directive 239, 240

Z
zero page section 184
8 Index

	Preface
	Organization of this Manual

	Introduction
	Introduction
	Document Conventions
	Typewriter font
	Italics
	[Brackets]
	Conventions
	Command Line
	Flags

	Compiler Architecture
	Predefined Symbol
	Linking
	Programming Support Utilities
	Listings
	Optimizations

	Tutorial Introduction
	Xtest.c, Example file
	Default Compiler Operation

	Compiling and Linking
	Step 1: Compiling
	Step 2: Assembling
	Step 3: Linking

	Automatic Code and Data Initialization
	Specifying Command Line Options

	Programming Environments
	Introduction
	The const and volatile Type Qualifiers
	Performing Input/Output in C
	Placing Data Objects in The Bss Section
	Redefining Sections
	Referencing Absolute Addresses
	Accessing Internal Registers
	Inserting Inline Assembly Instructions
	Inlining with pragmas
	Inlining with _asm
	Inlining Labels

	Writing Interrupt Handlers
	Placing Addresses in Gate Vectors
	Inline Function
	Interfacing C to Assembly Language
	Register Usage
	Stack Display

	Data Representation

	Using The Compiler
	Invoking the Compiler
	Compiler Command Line Options

	File Naming Conventions
	Generating Listings
	Generating an Error File
	Return Status
	Examples
	C Library Support
	How C Library Functions are Packaged
	Inserting Assembler Code Directly
	Linking Libraries with Your Program
	Integer Library Functions
	Common Input/Output Functions
	Functions Implemented as Macros
	Including Header Files

	Descriptions of C Library Functions
	Generate inline assembly code
	Abort program execution
	Find absolute value
	Arccosine
	Arcsine
	Arctangent
	Arctangent of y/x
	Convert buffer to double
	Convert buffer to integer
	Convert buffer to long
	Get the first bit set position
	Allocate and clear space on the heap
	Test or get the carry bit
	Round to next higher integer
	Cosine
	Hyperbolic cosine
	Clear a semaphore
	Divide with quotient and remainder
	Exit program execution
	Exponential
	Find double absolute value
	Round to next lower integer
	Find double modulus
	Free space on the heap
	Extract fraction from exponent part
	Get character from input stream
	Get a text line from input stream
	Test for alphabetic or numeric character
	Test for alphabetic character
	Test for control character
	Test for digit
	Test for graphic character
	Test for lowercase character
	Test for printing character
	Test for punctuation character
	Integer square root
	Test for whitespace character
	Test for uppercase character
	Test for hexadecimal digit
	Find long absolute value
	Scale double exponent
	Long divide with quotient and remainder
	Natural logarithm
	Common logarithm
	Restore calling environment
	Long integer square root
	Allocate space on the heap
	Test for maximum
	Scan buffer for character
	Compare two buffers for lexical order
	Copy one buffer to another
	Copy one buffer to another
	Propagate fill character throughout buffer
	Test for minimum
	Extract fraction and integer from double
	Test or get the parity
	Raise x to the y power
	Output formatted arguments to stdout
	Put a character to output stream
	Put a text line to output stream
	Generate pseudo-random number
	Reallocate space on the heap
	Allocate new memory
	Read formatted input
	Save calling environment
	Set interrupt flag
	Sin
	Hyperbolic sine
	Output arguments formatted to buffer
	Real square root
	Seed pseudo-random number generator
	Read formatted input from a string
	Set a semaphore
	Concatenate strings
	Scan string for first occurrence of character
	Compare two strings for lexical order
	Copy one string to another
	Find the end of a span of characters in a set
	Find length of a string
	Concatenate strings of length n
	Compare two n length strings for lexical order
	Copy n length string
	Find occurrence in string of character in set
	Scan string for last occurrence of character
	Find the end of a span of characters not in set
	Scan string for first occurrence of string
	Convert buffer to double
	Convert buffer to long
	Convert buffer to unsigned long
	Tangent
	Hyperbolic tangent
	Convert character to lowercase if necessary
	Convert character to uppercase if necessary
	Get pointer to next argument in list
	Stop accessing values in an argument list
	Start accessing values in an argument list
	Output arguments formatted to stdout
	Output arguments formatted to buffer

	Using The Assembler
	Invoking caxgate
	Object File
	Listings
	Assembly Language Syntax
	Instructions
	Labels
	Temporary Labels
	Constants
	Expressions
	Macro Instructions
	Conditional Directives
	Sections
	Includes

	Branch Optimization
	C Style Directives
	Assembler Directives
	Align the next instruction on a given boundary
	Define the default base for numerical constants
	Switch to the predefined .bsct section.
	Turn listing of conditionally excluded code on or off.
	Allocate constant(s)
	Allocate constant block
	Turn listing of debug directives on or off.
	Allocate variable(s)
	Conditional assembly
	Conditional assembly
	Stop the assembly
	End conditional assembly
	End conditional assembly
	End macro definition
	End repeat section
	Give a permanent value to a symbol
	Assemble next byte at the next even address relative to the start of a section.
	Generate error message.
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Include text from another text file
	Turn on listing during assembly.
	Give a text equivalent to a symbol
	Create a new local block
	Define a macro
	Send a message out to STDOUT
	Terminate a macro definition
	Turn on or off listing of macro expansion.
	Turn off listing.
	Disable pagination in the listing file
	Creates absolute symbols
	Sets the location counter to an offset from the beginning of a section.
	Start a new page in the listing file
	Specify the number of lines per pages in the listing file
	Repeat a list of lines a number of times
	Repeat a list of lines a number of times
	Restore saved section
	Terminate a repeat definition
	Save section
	Define a new section
	Give a resetable value to a symbol
	Insert a number of blank lines before the next statement in the listing file.
	Place code into a section.
	Specify the number of spaces for a tab character in the listing file
	Define default header
	Declare a variable to be visible
	Declare symbol as being defined elsewhere

	Using The Linker
	Linking XGATE Objects
	Linking Library Objects

	Debugging Support
	Programming Support
	Compiler Error Messages
	Parser (cpxgate) Error Messages
	Code Generator (cgxgate) Error Messages
	Assembler (caxgate) Error Messages
	Linker (clnk) Error Messages

	Modifying Compiler Operation
	The Configuration File
	Changing the Default Options
	Creating Your Own Options

	Example

	XGATE Machine Library
	Function Listing

	Compiler Passes
	The cpxgate Parser
	Command Line Options
	Return Status
	Example

	The cgxgate Code Generator
	Command Line Options
	Return Status
	Example

	The coxgate Assembly Language Optimizer
	Command Line Options
	Disabling Optimization
	Return Status
	Example

