4 N

OSMIC Version 4.1

C Cross Compiler User’s Guide
for Motorola MC68HC11

Copyright © COSMIC Softwar e 1995, 2003
All Trademarks arethe property of their respective owners

\ /

Table of Contents

Chapter 1

[BraCketS] .ovoveeevireereiererreree e
Conventions..................
Command Line

LinKiNg.....coeuereereeeeree e
Programming Support Utilities
[IE (] 0o

OPtIMIZALONS.....cveveeieireeieriie e
Support for Bank SWItChingccoceveienriireinereseeeeseeeens
Support for ROMable Code
SUPPOIT FOF EPIOM ... e

Chapter 2

Tutorial Introduction

Acia.c, EXample file.......ccciiireeeeer e 16
Default Compiler Operation
Compiling and Linking
Step 1: Compiling.........
Step 2: Assembling
SEEP 31 LiNKING ..t
Step 4: Generating S-Recordsfile.......occovrvereirneccnieen
Linking Your Application
Generating Automatic Data Initialization

Specifying Command Line Optionsccoeeeverenereneneneenenns
Chapter 3
Programming Environments
INEFOAUCEION. ...t 30
Modifying the Runtime Startupccocoveenrereienrrecnennenes 31

(i)

Description of Runtime Startup Code..........ccoceveeerenerucne. 31

Initializing datain RAM ..o 33
The const and volatile Type Qualifiers........cccceevvvecciesenenne 35
Performing INput/Output iN C........c.cvvveeeiinerreeerseeeeee 36
Placing Data Objectsin The BsS SeCtionccccveereerecnennee 37
Placing Data Objectsin The Zero Page Section...........c.cccc...... 37

Setting Zero Page Sizeooecveveriieineeeeeee e 38
RedefiNiNg SECLIONS.....ccccevieeieieesereeesee e 38
Fast Function Calls

Static Model 1
Static Model 2
Static Model 3

Referencing Absolute AdAreSSes.........cvvvvveveinerieeenesieiesene 43
Accessing Internal REGISLErScoeeierrenereee s
Inserting Inline Assembly Instructions...........cccccoevevcreicnenene.
Inlining with pragmas..........c.ccceueu...
INNING With _aSM.....occciiiciee e
INHNING LabES. ..o
Writing Interrupt Handlers...........c.c.......
Placing Addresses in Interrupt Vectors
Calling a Bank Switched Function.........
Interfacing C to Assembly Language.........cccoceeeeerenirenecneenee
REGISIEr USAE.....ecviieeicieecieeese ettt
Stack Model
Stack ReEPresentationccoveeerereeeeenneeeseseeeeseeeees
StAtiC MOAEIS.....coeveeeirccre s
Heap Management Control with the C Compiler..................... 58
Modifying The Heap Location...........ccoceerennenerinicnencens 60
Data REPIreSENtatioN.........ccveuiiieiierieeseeseese e 63
Chapter 4
Using The Compiler
INvoking the COmMPIlEr.........ceovvrieinreeeree e 66
Compiler Command Line Options...........ccocvereriererereeen. 67
File Naming ConVentions...........ccoceeerererereeieseeseneseeses e 72
Generating Listings
Generating an Error File.......coovcvieieieccesecesee e 73
RELUrN SEBLUS.......coovciiiiiiiir s 73
EXAMPIES ... 73

C Library SUPPOITcoeeiiirireeseee e 74
How C Library Functions are Packaged...........cc.cccceveunnee. 74
Inserting Assembler Code Directlyccevevveirierenrereenenn. 74
Linking Libraries with Y our Program....
Integer Library Functions..........c.ccc....... -
Common Input/Output Functions....... e 15
Functions Implemented as Macros..........cccoovveeneereeneeeenn 75
Including Header FileS.......cccovvveiveiieeeseeseee s

Descriptions of C Library Functions
Generateinline assembly COdE........covereerreeiineneceeee
Initialize K4 window registers.........ccoeerenecneeneneneeeneenes
ADOrt program eXeCULION...........eoeruereeereeeereseeeseeeseeseee e
Find absolute ValUue.............coooierieninneeer e
Arccosine .
ATCSINB.....oiiiitet ettt
ATCLBNGENT ...t
Arctangent of y/X......cccccceeueee
Convert buffer to double
Convert buffer to integer
Convert buffer to1oNgc.ceveereiereiceesereeeese e
Verify the recorded checksum...........cccocvvvevcievcciccccnnn,
Allocate and clear space on the heap...... ...90
Round to next higher integer91

Hyperbolic COSINE........cooiiiie e 93
Divide with quotient and remainderc.ccoceevvevecrernenene. 94
Copy abuffer to an eeprom buffer
Erase the full eeprom Space.........cccvveevreneinnnecnesneenes
Propagate fill character throughout eeprom buffer 97
EXit program eXeCULIONcccerrerenereneee e
EXPONENtialcoveeieieeieeee s
Find double absolute value
Round to next [ower integerccoeevveneevieceseseeesenn
Find double MOdUIUS..........ccovveverirrecreee e
Free space on the heap........c.cccceeeeee
Extract fraction from exponent part
Get character from input stream.........
Get atext linefrominput stream..........cccccevveeveerecereennn
Test for aphabetic or numeric charactercccceeeeee 107
Test for alphabetic character
Test for control character.........

TeSEFOr Aigit ..o

(iv)

Test for graphic charaCter ...
Test for lower-case Charactexc.covvvrvvnnnesenrienes
Test for printing charaCtercccveeveievcivccceseee
Test for punctuation character ...
Integer square root...........cceueueee
Test for whitespace character
Test for upper-case CharaCterccoeeeveeveeeneneecneeenns
Test for hexadecimal digit.......ccccoeevevveienciicciescie
Find long absolute value .
Scale double EXPONENT.........c.orvererireireieereree e

Long divide with quotient and remaindercc.ccceeueee 121
Natural 10garithm ...

Common 10garithm ...

Restore calling environment .
Long integer SQUAr€ rOO0L.........cceevivereeresiererieeseseesesaeeenens
Allocate space onthe heapcoeverrieeerrece e
Test for maximum..................
Scan buffer for characterccccceeeeeee.
Compare two buffersfor lexical order
Copy one buffer to another...........ccccoeevveveievciceceseen
Copy one buffer to another...........cccoeevvevciveccecesee
Propagate fill character throughout buffer
Test for MiniMUM ...
Extract fraction and integer from double.... .
Raise X tO the y POWENcooeireiiieeeee e
Output formatted arguments to stdout............cccveeeerenene.
Put a character to output stream .
Put atext line to output Stream..........ccccoeeevereiereerenienens
Generate pseudo-random NUMbEYccccooeiriieienenennes
Reallocate space onthe heap.......c.cooeoeveenenneiccncee
AllOCAE NEW MEMONY ..ot
Read formatted input

Hyperbolic Sine.........ccccooeriiiincincee
Output arguments formatted to buffer
Real square root...........coeevereeneicnenennens "
Seed pseudo-random number generatorccceevenene.
Read formatted input from astringccoceeeeevievereniennns
Concatenate StriNgS.........oevererereerenerenrereereneens
Scan string for first occurrence of character .
Compare two strings for lexical ordercccoeevereenene

Copy one string to @anotherccoeeeercenierene e 161

Find the end of a span of charactersin aset..................... 162
Find length of @String........ccoceevveeeneniecineececee e 163
Concatenate strings of length N ..., 164

Compare two n length strings for lexica order
Copy n1ength Stringcccccveeeverrereeeeseeee

Find occurrence in string of character in set
Scan string for last occurrence of character
Find the end of a span of characters not in set
Scan string for first occurrence of String..........ccoeevvevveeeee.
Convert buffer to double ...
Convert buffer to10Ngccveerierrireeseeer e
Convert buffer to unsigned [0Ng.........cccoeererrenecneenn

Get pointer to next argument in list...............

Stop accessing values in an argument list
Start accessing valuesin an argument list.........ccccoeveee.
Output arguments formatted to stdout.............cccevvevrenee.
Output arguments formatted to buffer............cccceeeeeennene.
Chapter 5
Using The Assembler
INVOKING CAB8LL ... e 188
OBJECE FIlE....iieeiee s 190
LIStNGS...ccviieieiteieteices et 191
Assembly Language SyNtaX........cceeeereereneeeseesseneseseesens 192

1 0 (ot 0 T 192

Temporary LabelS.......cooeiieee e 194
(000]01 = 0| £ PSRRI

Expressions
MaACrO INSITUCLIONS.......ccueieiereeeeiecietece ettt 197

Branch Optimization
(00 1Y 11 7= SRRSO
C StYlEDITECHIVES......ccveieieieirieee e
DITECHIVES ...t

(vi)

Align the next instruction on a given boundary 205
Define the default base for numerical constants..............
Switch to the predefined .bsct section.cccoeevevecnene 207
Turn listing of conditionally excluded code on or off...... 208
Allocate CONSLANL(S)vevevereeereeieierie et
Allocate constant BlOCKccvrerirrseiic e
Turn listing of debug directives on or off.... .
Allocate variable(S) ..o
Conditional assembly ...
Conditional assembly
Stop the assembly ...
End conditional assembly
End conditional assembly
End macro definition..........ccoveeevneeinieeseeeee
End repeat sectionccoeeveerieenenne.
Give a permanent value to a symbol
Assemble next byte at the next even address relative to

the start of @SeCtion.........ccccvvvvvrernisne e 221
Generate eror MESSAQE.covrveerereerrererrareesreesesneeneas 222
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly
Conditional assembly .
Include text from another text file........cccoovvvvvrvevriene,
Turn on listing during assembly........cccccoveenrnecrnnnenes
Give atext equivaent to asymbol ...
Create anew local block
Defineamacrocccoeeevenececnenne. .
Send amessage out to STDOUTccvvveeveveseriecesienenns
Terminate amacro definitioncccoovvvvrvnsseceiene,
Turn on or off listing of macro expansion... "
TUurn Off liStiNG. ..o 243
Disable pagination in the listing fileccccoceoeiiinicnenns 244
Creates absolute symbols..........cccvirineiniineeeee 245
Sets the location counter to an offset from the beginning of

ASECHION. .. 246

Start anew pageinthelisting file.........c.ccoovvriincinenn 247
Specify the number of lines per pagesin thelisting file.. 248
Repeat alist of linesanumber of times............ccceeevvennee. 249
Repeat alist of linesanumber of times..........c.cccceeevenene. 250

Restore saved SECHIONcocoeerrereieneeee e 252
Terminate arepeat definition.........ccoooeveenereieneercens 253
SAVE SECHON ...t 254
Define anew SECHIONcccvrevereeenirereeerreeee e 255
Give aresetable valueto asymbolccccoveevvevecrieenenn. 257
Insert a number of blank lines before the next statement in
the listing file. ..o 258
Place code into @ SeCtion..........ccveeererreriecrieese e 259
Specify the number of spaces for atab character in
the listing fil€....couveiececeec e 260
Define default headerccoveeinireinniceseeeee 261
Declare avariableto bevisiblecccoooenineiieicnene. 262
Declare symbol as being defined elsewhere..................... 263
Chapter 6
Using TheLinker
INEFOAUCTION. ...t 267
OVEIVIBW....eetiic ettt 268
Linker Command File Processing........cccccvevevenenieiesveresienienens 270
Inserting commentsin Linker commands.............ccc.c...... 271

LinKer OPLioNS........cccereiriereeereecsie s 272
Global Command Line Options.........ccoeeereerereneiesieneneene 273
Segment Control OPtioNS.........ccceeveeereenererereeseeeeens 274
SegMENt GrOUPING.....c.ceereererieresieresreeeesseresseeeeseessseesens 277
Linking Files onthe Command line.........ccccccevivveivrvennnnn. 278

Private Region OptioNS..........ccoerrereiinenenenesese e
Symbol Definition Option....
Reserve Space OptioN........cccccvveeeeeneeiisee e
Section REIOCALION ..o
Address ArthmMELiC.........coovveeiie e
Overlapping CoNtrolc.coeereerenerereereee e
Setting Bias and Offset
Setting the BiaS........ccccveiveivecee e
Setting the OffSet......ccviceiecee e
Using Default Placement..........oceeveeeienneeienneeenenns

(viii)

LinKing OBJECEScueirireeeeirerieee et
Linking Library Objects

Library Order......ocoeirvieieinnineenee e
Automatic Data Initializationccccceeveccessneecns 287
DesCriptor FOrMAEL...........cveerereeerinerreeeres e 287
Checksum COMPULALTIONceevrerrerereresrereereereeeseeeeesennenenes 288
Shared Data Handling
DEFSand REFScccoeiiiiie s
SPECIAl TOPICS....veviireeieeririeiee et
Private Name RegiONS.cccovveireiniree e 291
Renaming SymbolS ..o 292
Absolute Symbol TabIes ... 295
Description of The Map File ... 297
REtUMN VAlUB.......c.coeiiiiec s 298
Linker Command Line EXamples.........cccovveinneenireneenennns 298

Chapter 7

Chapter 8

The chank ULtyccovveeerrieeeceeeces s
Command Line Options
Return Status............coeveeviinnene,

The chex Utility
Command Line Options
Return Status ..o,

Command Lin€ OPLioNSccoerueverieereneerereeese e 318
REIUIMN SEALUS ... 319

Chapter A

Compiler Error Messages

Parser (cp6811) Error MESSAgES.......coveuervereererieenieseeiesieeniens 328
Code Generator (cg6811) Error MeSsages.........cccceevvververennne. 342
Assembler (cab811) Error MeSSages.......ccouvvvveervesieesveseenenns 343
Linker (cInk) Error MESSAgEScccueirereeernineereieeseeeeeseseenenes 346
Chapter B

Modifying Compiler Operation

The Configuration File..........coviriininne e
Changing the Default Options
Creating Y our Own Options.

Chapter C
MC68HC11 MachineLibrary
Check stack growth ... 34
Add doubleto double............cccoeieiiiiiniieeree 355
Compare double with double............cccoooveiniinininn 356
Divide double by double...........ccccceoviivnineiiiceeee 357
Multiply double by double.........ccccoveviiiniciiicieeeen 358
Negate a double .
Subtract double from double.........cccoorirririinrieeee 360
Copy adoubleinto adouble...........coeoeieiirinnencereen 361
Convert doubleto float...........ccevererenreicrereec 362
Convert doubleto INtegercccvvvveeveeieseiseiceseee s 363
Convert doubleinto long integer........ccovvevveeeeesienieennn, 364
Copy adouble onto the stack...........cccoveeernicinncennes

Eeprom char bit field update.............cccoceeverecireenene
Eeprom short bit field update

)

Write achar int in @promM..........cccvereencnerereeeees 368
Write adoublein egprom.........ccccveeveeveeivicesieseseeeenn 369
Write along int in €EProM.........ccccevevveieneisieisie e 370
Write ashort int in eeprom.....
Move a structure in eeprom....
Function entryc.cccceeevenene .
FUNCLION ©NLIY ..o 374
Add float tO FlOaL ..o 375
Compare floats .
Divide float by flOatcccoorrveeinrieeiee e
Add float to float in memorycccceeerenrenencneseeen
Dividefloat by float in memoryccccceeevrieneinicnenens
Multiply float by float in memoryccocevveveincnincns
Subtract float from float in memory .
Multiply float by flOaLcccvvereeriircsce
Negate aflOat.........coceoireieiiirccre e
Subtract float from float

Convert float into double
Convert float to integer.................. .
Convert float into long iNtegercccecvveveeveeicccesieenen
Quoatient of integer diViSion.........ccceeevierieneieseneieseene
Integer division by a byte constant... .
Integer left shiftccoceeriieccieene. ...390
Remainder of integer division... "
Integer MUItipliCatioNc.cccvveieiiniceeere e 392
Integer multiplication by abyte constantcccceevnee 393
Integer multiplication by 10 .
Integer right Shift........ocoveiirnce e
Convert integer into double
Convert integer into floatocoeerreneineirereeene
Perform C switch statement on char...........ccccooeveineennne
Perform C switch statement onlong
Perform C switch statementcccovviinnvnnnecine,
Function entry with argument ind and 2,Xcoceeeneee. 401
Function entry with argument ind and 2,x402
Function entry with argument inb.....

Function entry with argument inb..... ... 404
Function entry with argument ind..........ccocecvveviiicinnnne 405
Function entry with argument ind..........ccccccvveveiiciennne 406
Long integer addition.............cc.c......

Bitwise AND for long integers. .
Long integer COMPAIe..........ccerveeeruerereeneeereesesee e seeeneens

Quoatient of long integer diviSion..........cocoveerenecreeeenn
Long addition........cccovvveiiinieiecseesee e
LoNg BItWiSE ANDcoviiiiciiciceesecee e
Quotient of long integer division in memory ...
Long Shift [Eft ..o
Remainder of long integer division in memory....
Long multiplication in MEmMOrYcccveeeeerereneeienieenes
LONg BItWISE OR.....coovcicieieiicseere et
Signed long shift right
LoNg SUBLIECHION. ..ot
Quoatient of unsigned long division in memory
Remainder of long unsigned integer division...................
Unsigned long shift Fight.........coceeeiiineiniceeeees
Long bitwise exclusive OR
Longinteger shift Ift........ccccevveiiieieieicec e
Remainder of long integer diviSion.........cocoeeevvneeencnennns
Multiply long integer by long integer.....
Negate along integer..........cccc.....
Bitwise OR with long integers.....
Long integer right shift.........cceoeveiiciiienccceesee
Long test against ZEer0.......cccceeeerieerierireeee e
Long integer subtraction.................
Convert long integer into double
Convert long integer into floatcccc....c..
Quoatient of unsigned long integer division......................
Remainder of unsigned long integer division...................
Unsigned long integer shift right
Bitwise exclusive OR with long integers.........c.coevevnenee
Compare along integer t0 Zeroccoeeveereeeereeseeeseeeenns
Copy astructure to another...........cevvvevervrereressesnnens
Copy astructure to another.............coevvevervreseresnesrenes
Move stack pointer forward
Move stack pointer backward............ccccoeveeiveinerecennene,
Move stack pointer forward...........ccoorrveiinneeninneeenens
Quoatient of unsigned integer division
Convert unsigned integer into double.....
Convert unsigned integer into float
Unsigned long integer COMpPare.........cccoceeevverereenieiesveennes
Convert unsigned long integer into double.......................
Convert unsigned long integer into float
Remainder of unsigned integer division....
Unsigned integer shift right ...

(xii)

Banked function call for the MC68HC11CO.................... 452
Banked function call for the MC68HC11K 4
Save bank descriptor for the MC68HC11CO 454

Save bank descriptor for the MC68HC11K4 455
Chapter D
Compiler Passes
The CPBBLL ParSerc.covvverereeresrereiresrereeseseereese s
Command Line Options
Return Status

Preface

he Cross Compiler User's Guide for MC68HCI11 is a reference

guide for programmers writing C programs for MC68HCST1011
microcontroller environments. It provides an overview of how the cross
compiler works, and explains how to compile, assemble, link and debug
programs. It also describes the programming support utilities included
with the cross compiler and provides tutorial and reference information
to help you configure executable images to meet specific requirements.
This manual assumes that you are familiar with your host operating sys-
tem and with your specific target environment.

Organization of this Manual
Thismanual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments’, explains how to use the fea-
tures of C for MC68HC1 to meet the requirements of your particular
application. It explains how to create a runtime startup for your applica-
tion, and how to write C routines that perform special tasks such as:
serial 1/0O, direct references to hardware addresses, interrupt handling,
and assembly language calls.

© 2003 COSMIC Software Preface 1

2

- Organization of this Manual

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the MC68HC11 assem-
bler and its options. It explains the rules that your assembly language
source must follow, and it documents all the directives supported by the
assembler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail al the features of the linker and their
use.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.

Appendix A, “Compiler Error Messages’, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Madifying Compiler Operation”, describes the “ configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “MC68HC11 Machine Library”, describes the assembly
language routines that provide support for the C runtime library.

Appendix D, “Compiler Passes’, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.

Preface © 2003 COSMIC Software

CHAPTER

1

| ntroduction

This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections;

Introduction

Document Conventions
Compiler Architecture
Predefined Symbol

Linking

Programming Support Utilities
Listings

Optimizations

Support for Bank Switching
Support for ROMable Code

Support for eeprom

© 2003 COSMIC Software Introduction

Introduction

Introduction

The C cross compiler targeting the MC68HC11 microcontroller reads C
source files, assembly language source files, and object code files, and
produces an executable file. You can regquest listings that show your C
source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC's C source level cross debugger or by other debug-
gersor in-circuit emulators.

You begin compilation by invoking the cx6811 compiler driver with the
specific options you need and the files to be compiled.

Document Conventions

In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at aterminal or observe in afile. The followingisalist
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is

used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It isalso used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to afile will appear in aline box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

cx6811 +debug acia.c

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

4 Introduction © 2003 COSMIC Software

Document Conventions

If, however, the text included a partia listing of the file acia.c ‘an
example of text from a file or from output to the termina’ then type-
writer font would still be used, but would be enclosed in aline box:

/* defines the ACIA as a structure */
struct acia {

char status;

char data;

} acia @0x6000;

NOTE

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

[talics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

cx6811 +debug file.c

In this example, cx6811 +debug file.c isshown in typewriter font
because it must be typed exactly as shown. Because the filename must
be specified by the user, however, fileis shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because optionsis not
enclosed by brackets.

© 2003 COSMIC Software Introduction

6

Document Conventions

As another example, the line:
filel.[o]h11]

means that one file with the extension .o or .h11 may be specified,
and the line:

filel [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing acommand line.

Command Line
A command lineis generally composed of three major parts:

program_name [<flags>] <files>

where <program_name> isthe name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags

J Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which isalwaysa‘-’ or a‘+’, followed
by the name of the flag (usually a single letter). Some flags are smply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
asthe second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed a phabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

Introduction © 2003 COSMIC Software

Document Conventions

indicated by one of the following code, displayed immediately after the

option name:
Code ‘ Type of information
* character string
short integer

#it long integer

? single character

If the code isimmediately followed by the character ‘>’ the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex [options] file
-a## absolute file start address
-b## address bias
-eftt entry point address
-2 output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-0* output file name
-p use paged address format
-pp use paged address with mapping
-pn use paged address in bank only
-s output increasing addresses
-X* exclude named segment

chex accepts the following distinct flags:

© 2003 COSMIC Software Introduction 7

Compiler Architecture

Flags ‘ Function
-a accept a long integer value
-b accept a long integer value
-e accept a long integer value
-f accept a single character
-h simply a flag indicator
+h accept a character string
-m accept a short integer value,
-n accept a character string and may be repeated
-0 accept a character string
-p simply a flag indicator
-pn simply a flag indicator
-pp simply a flag indicator
-S simply a flag indicator
-X accept a character string and may be repeated

Compiler Architecture

The C compiler consists of several programs that work together to
tranglate your C source files to executable files and listings. cx6811
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

Cp6811 - the C preprocessor and language parser. cp681l expands
directivesin your C source and parses the resulting text.

Cg6811 - the code generator. cg6811 accepts the output of cp6811 and
generates assembly language statements.

C06811 - the assembly language optimizer. co6811 optimizes the
assembly language code that cg6811 generates.

8 Introduction © 2003 COSMIC Software

Predefined Symbol

cab811 - the assembler. ca6811 converts the assembly language output
of co6811 to arelocatable object module.

Predefined Symbol

The COSMIC compiler definesthe CSMC__ preprocessor symbol. It
expands to a numerical value whose each hit indicates if a specific
option has been activated:

bit 0: setif nowiden option specified (+nowiden)

bit 1. setif single precision option specified (+sprec)
bit 2: setif unsigned char option specified (-pu)

bit 4: setif reverse bitfield option specified (+rev)
bit 5: setif no enum optimization specified (-pne)

Linking

clnk combines al the object modules that make up your program with
the appropriate modules from the C library. You can aso build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cx6811, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC's debugger to debug your code.

Programming Support Utilities

Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities listed below to inspect the executable.

cbank - optimize the bank filling with object file. It reorganizes a
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order.

chex - absolute hex file generator. chex translates executable images
produced by the linker into hexadecimal interchange formats, for use
with in-circuit emulators and PROM programmers. chex produces the
following formats:

© 2003 COSMIC Software Introduction

Listings

- Motorola S-record format
- standard Intel hex format

clabs - absolute listing utility. clabs trand ates relocatable listings pro-
duced by the assembler by replacing al relocatable information by
absolute information. This utility must to be used only after the linker.

clib - build and maintain object module libraries. clib alows you to
collect related files into a single named library file for convenient stor-
age. You useit to build and maintain object module librariesin standard
library format.

cobj - object module inspector. cobj allows you to examine standard
format executable and relocatabl e object files for symbol table informa-
tion and to determine their size and configuration.

Ccv695 - IEEE695 format converter. cv695 allows you to generate
|EEE695 format file. This utility must to be used only after the linker.

Listings

Several optionsfor listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.

If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.

Optimizations

The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:

* The compiler supports five programming models, allowing you to
generate fully optimized code for your target system.

10 Introduction © 2003 COSMIC Software

Optimizations

e The compiler uses register d to hold the first argument of a func-
tion cal if:

1) thefunction does not return a structure or adouble, and
2) thefirst argument is derived from one of the following types:

char,

short,

int, long,
float,

pointer to...,
or array of....

e The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-hit.

» Thecompiler eliminates unreachable code.

* Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

e Integer and float constant expressions are folded at compile time.
» Redundant load and store operations are removed.

* enum islarge enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

e The compiler performs multiplication by powers of two as faster
shift instructions.

* An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.

© 2003 COSMIC Software Introduction

Support for Bank Switching

e The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modul es needed.

Support for Bank Switching

The compiler supports bank switching for code only, using the internal
window mechanism provided by the MC68HC11K4 processor, or
using any external user provided mechanism. Bank switching is sup-
ported via:

e @far type quaifier to describe a function relocated in a different
bank. Calling such a function implies a specia calling sequence,
and a special return sequence. Such a function has to be defined
@far and referenced as @far in al thefilesusing it.

e Linker options are required to ensure the proper boundaries,
alignment for physical and logical addresses computations.

NOTE
The routines used to access the window registers are located in the
library files wealc.s, wecalk.s and wsetup.s and have been written using
the default register address 0. These files must be modified if using a dif-
ferent base address

Support for ROMable Code

The compiler provides the following features to support ROMable code
production. See Chapter 3 for more information.

» Referencing of absolute hardware addresses;
e Control of the MC68HCL11 interrupt system;
e Automatic datainitialization;

e User configurable runtime startup file;

12 Introduction © 2003 COSMIC Software

Support for eeprom

e Support for mixing C and assembly language code; and

» User configurable executable images suitable for direct input to a
PROM programmer or for direct downloading to atarget system.

Support for eeprom

The compiler provides the following features to support eeprom han-
dling:

* @eeprom type qualifier to describe a variable as an eeprom loca-
tion. The compiler generates special sequences when the variable
is modified.

» Library functions for erasure, initialization and copy of eeprom
locations.

NOTE
The basic routine to program an eeprom byte islocated in the library file
eeprom.s and has been written using the default input/output address
0x1000. Thisfile must be modified if using a different base address.

For information on using the compiler, see Chapter 4.

For information on using the assembler, see Chapter 5.

For information on using the linker, see Chapter 6.

For information on debugging support, see Chapter 7.

For information on using the programming utilities, see Chapter 8.
For information on the compiler passes, see Appendix D.

© 2003 COSMIC Software Introduction

13

CHAPTER

2

Tutorial Introduction

This chapter will demonstrate, step by step, how to compile, assemble
and link the example program acia.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC toals, it will demonstrate the basics of using the com-
piler for the most common applications.

In thistutorial you will find information on the following topics:
o Default Compiler Operation
e Compiling and Linking
» Linking Your Application
» Generating Automatic Data I nitialization

» Specifying Command Line Options

© 2003 COSMIC Software Tutorial Introduction

Acia.c, Examplefile

Acia.c, Example file

The following is alisting of acia.c. This C source file is copied during
the installation of the compiler:

/* EXAMPLE PROGRAM WITH INTERRUPT HANDLING
*
/

#include <io.h>

#define SIZE 512 /* buffer size */
#define TDRE 0x80 /* transmit ready bit */
/* Authorize interrupts. */

#define cli() _asm(“cli\n™)

/* Some variables */

char buffer[SI1ZE]; /* reception buffer */
char * ptlec; /* read pointer */
char * ptecr; /* write pointer */

/* Character reception.

* Loops until a character is received.
*/
char getch(void)
{
char c; /* character to be returned */

while (ptlec == ptecr) /* equal pointers => loop */

c = *ptlec++; /* get the received char */

if (ptlec >= &buffer[SIZE])/* put in in buffer */
ptlec = buffer;

return (c);

}

/* Send a char to the SCI.
*/
void outch(char c)

{
while (1(SCSR & TDRE)) /* wait for READY */

SCDR = c; /* send it */
T

16 Tutorial Introduction © 2003 COSMIC Software

Acia.c, Examplefile

/* Character reception routine.
* This routine is called on interrupt.
* It puts the received char in the buffer.
*/
@interrupt void recept(void)
{
SCSR; /* clear interrupt */
ptecr++ = SCDR; / get the char */

if (ptecr >= &buffer[SI1ZE]) /* put it in buffer */
ptecr = buffer;

}

/* Main program.
* Sets up the SCI and starts an infinite loop
* of receive transmit.

*/
void main(void)
{
ptecr = ptlec = buffer; /* initialize pointers */
BAUD = 0x30; /* initialize SCI */
SCCR2 = 0x2c; /* parameters for interrupt */
cliQ; /* authorize interrupts */
for (3) /* loop */
outch(getch()); /* get and put a char */
¥

Default Compiler Operation

By default, the compiler compiles and assembles your program. You
may then link object files using clnk to create an executable program.

As it processes the command line, cx6811 echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.

According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

files Assembler source module

file.o Relocatable object module

file.h1linput (e.g. libraries) or output (e.g. absolute executabl€)
filefor the linker

© 2003 COSMIC Software Tutorial Introduction

17

Compiling and Linking

Compiling and Linking

To compile and assemble acia.c using default options, type:

‘ cx6811 acia-c l

The compiler writes the name of the input file it processes:

‘ acia.c: ‘

The result of the compilation processis an object module named acia.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Sep 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named acia.s.

‘ cx6811 -s acia.c ‘

The -s option directs cx6811 to stop after having produced the assembly
file acia.s. You can then edit this file with your favorite editor. You can
aso visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

‘ type acia.s ‘

If you wish to get an interspersed C and assembly language file, you
should type:

‘ cx6811 -1 acia.c ‘

The -1 option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with *;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.

18 Tutorial Introduction © 2003 COSMIC Software

Compiling and Linking

The -v option, known as verbose mode, instructs the C compiler to dis-
play all of itsactions. For exampleif you type:

cx6811 -v -s acia.c

the display will look like something similar to the following:

acia.c:
cp6811 -0 ctempc.cx1l -i\cx\h681l1l -u acia.c
cg6811 -0 ctempc.cx2 ctempc.cxl
co6811 -0 acia.s ctempc.cx2

The compiler runs each pass:

cp6811 the C parser
cg6811 the assembly code generator
co6811 the optimizer

For more information, see Appendix D, “Compiler Passes’.

Sep 2: Assembling
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is acia.o.

| cx6811 acia.s |

or

| ca6811 -i\cx\h6811 acia.s |

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
alisting file named acia.ls that will also contain a cross reference:

ca6811 -c -1 acia.s

For more information, see Chapter 5, “Using The Assembler”.

© 2003 COSMIC Software Tutorial Introduction

19

Compiling and Linking

Sep 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.0) into
an absolute executable file: acia.h1l in our example. Code and data
sections will be located at absolute memory addresses. The linker is
used with acommand file (acia.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, interrupt vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

Type ‘ Description
text code (or program) section (e.g. ROM)
.const constant and literal data (e.g. ROM)
.data all static initialized data (e.g. RAM)
.bss all non initialized data (e.g. RAM)
.bsct all data in the first 256 bytes (see @dir in chapter 3),
also called zero page

In our example, and in the test file provided with the compiler, the
acia.lkf file contains the following information:

1 # LINK COMMAND FILE FOR TEST PROGRAM

2 # Copyright (c) 1995 by COSMIC Software

3 #

4 +seg .text -b O0xe000 -n.text# program start address
5 +seg .const -a .text constants after program
6 +seg .data -b 0x2000 data start address

7 crts.o startup routine

8 acia.o application program

9 \cx\lib\libi.hl1l1 C library (if needed)
10 \cx\lib\libm_.h11 machine library

11 +seg .const -bOxffd6 vectors start address
12 vector.o interrupt vectors file
13 +def __memory=@.bss symbol used by startup
14 +def __ stack=0x00fFf stack pointer initial value

HHHFHHFEHHHFHHR

20 Tutorial Introduction © 2003 COSMIC Software

Compiling and Linking

You can create your own link command file by modifying the one pro-
vided with the compiler.

Here isthe explanation of the linesin acia.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#’ character.

line 4: +seg .text -b0xe000 -n.text creates atext (code) seg-
ment located at hex address e000, and sets the segment nameto . text.

line 5. +seg .const -a.text creates a constant segment located
after the previous text segment.

line6: +seg .data -b0x2000 creates a data segment located at hex
address 2000.

line 7: crts.o runtime startup code. It will be located at 0xe000 in
the text segment.

line 8: acia.o, thefile that constitutes your application. It follows the
startup routine for code and data.

line9: libi.h11 theinteger library to resolve references.
line 10: 1ibm.h11 the machine library to resolve references.

line 11: +seg .const -bOxffd6 creates a hew constant segment
located at hex address £fd6.

line 12: vectors.o interrupt vectorsfile.

line 13: +def __ memory=@.bss defines a symbol __memory equal
to the value of the current address in the .bss segment. Thisis used to
get the address of the end of the bss. The symbol __memory is used by
the startup routine to reset the bss.

line 14: +def __ stack=0x00ff defines a symbol __ stack equa to
the absolute value 00FF (hex value). The symbol __ stack is used by the
startup routine to initialize the stack pointer.

© 2003 COSMIC Software Tutorial Introduction

21

Compiling and Linking

By default, and in our example, the .bss segment follows the .data seg-
ment.

The crts.o file contains the runtime startup that performs the following
operations:

e initidizethe bss, if any
 initialize the stack pointer
» call main() or any other chosen entry point.

For more information, see “ Modifying the Runtime Sartup” in Chapter
3.

After you have modified the linker command file, you can link by typ-
ing:

‘ clnk -o acia.hl1l acia.lkf

For more information, see Chapter 6, “Using The Linker”.

Sep 4: Generating S-Recordsfile
Although acia.h1l is an executable image, it may not be in the correct
format to be loaded on your target. Use the chex utility to transate the
format produced by the linker into standard formats. To translate
acia.h11 to Motorola standard S-record format:

‘ chex acia.hll > acia.hex ‘

or

‘ chex -o acia.hex acia.hll ‘

acia.hex is now an executable image in Motorola S-record format and
is ready to be loaded in your target system.

For more information, see “ The chex Utility” in Chapter 8.

22 Tutorial Introduction © 2003 COSMIC Software

Linking Your Application

Linking Your Application

You can create as many text, data and bss segments as your application
reguires. For example, assume we have one bss, two data and two text
segments. Our link command file will ook like:

+seg -bsct -bOx0 # zpage start address
var_zpage.o # zpage variables file
+seg -text -b 0xe000 -n .text# program start address

+seg .const -a .text constants follow program
+seg .data -b 0x2000 data start address

+seg .bss -b 0x2500 bss start address

crts.o startup routine

acia.o main program

modulel.o application program

+seg .text -b Oxf000 start new text section
module2.o application program
module3.o application program

\cx\lib\libi._h11
\cx\lib\libm._.h11
+seg .const -bOxffd6
vector.o

+def __memory=@.bss
+def __ stack=0x00ff

C library (if needed)
machine library

vectors start address
interrupt vectors

symbol used by startup
stack pointer initial value

HHHFHHHFHHHE R

In this example the linker will locate and merge crts.o, acia.o and
modulel.o in atext segment at 0xe000 immediately followed by a con-
stant segment, a data segment at 0x2000 and a bss segment, if heeded
at 0x2500. zero page variables will be located at 0x0. The rest of the
application, module2.0 and module3.0 and the libraries will be located
and merged in a hew text segment at OxF000 then the interrupt vectors
file, vector.o in a constant segment at Oxffd6.

For more information about the linker, see Chapter 6, “Using The
Linker”.

© 2003 COSMIC Software Tutorial Introduction

Generating Automatic Data Initialization

Generating Automatic Data Initialization
Usually, in embedded applications, your program must reside in ROM.

Thisis not an issue when your application contains code and read-only
data (such as string or const variables). All you have to do isto burn a
PROM with the correct values and plug it into your application board.

The problem comes up when your application uses initial data values
that you have defined with initialized static data. These static data val-
ues must reside in RAM.

There are two types of static datainitializations:
1) datathat is explicitly initialized to anon-zero value:
char varl = 25;
which is generated into the .data section and
2) datathat is explicitly initialized to zero or |eft uninitialized:
char var2;
which is generated into the .bss section.

There is one exception to the above rules when you declare data that
will be located in the zero page, using the @dir type qudifier. In this
case, the datais generated into the .bsct section.

The first method to ensure that these values are correct consists in add-
ing code in your application that reinitializes them from a copy that you
have created and located in ROM, at each restart of the application.

The second method isto use the crtsi.h11 start-up file:

1) that defines a symbol that will force the linker to create a copy of
theinitialized RAM in ROM

2) and that will do the copy from ROM to RAM

24 Tutorial Introduction © 2003 COSMIC Software

Generating Automatic Data Initialization

The following link file demonstrates how to achieve automatic data ini-

tiaization.

+seg -text -b 0xe000 -n
+seg .const -a .text
+seg .bsct -b 0 -m 0x100
+seg .data -b0x2000
\cx\lib\crtsi.hll

acia.o

modulel.o

\cx\lib\libi.h11
\cx\lib\libm.h11
+def __ _memory=@.bss

text #

HoH K HHHHHR

program start address
constants follow program
zpage start address
data start address
startup with auto-init
main program

module program

C library (if needed)
machine library

symbol used by library

In the above example, the text segment is located at address 0xe000,
the data segment is located at address 0x2000, immediately followed
by the bss segment that contains uninitialized data. The copy of the ini-
tialized data in ROM will follow the descriptor created by the linker

In case of multiple code and data segments, a link command file could

after the code segment.

be:

+seg -text -b 0xe000 -n
+seg .const -a .text
+seg .bsct -b 0 -m 0x100
+seg .data -b0x2000
\cx\lib\crtsi.hll
acia.o

modulel.o

+seg .-text -bOxf000
module2.o

module3.o

\cx\lib\libi.hl1
\cx\lib\libm.h11

+seg .const -b Oxffd6
vector.o

+def __ _memory=@.bss
+def __ stack=0x00ff

or

-text #

HHHEHFEHRFTHFEHFHEFHHRER

+seg -text -b Oxe000 -n .text#

+seg .const -a .text

© 2003 COSMIC Software

#

program start address
constants follow program
zpage start address

data start address
startup with auto-init
main program

module program

new code segment

module program

module program

C library (if needed)
machine library

vectors start address
interrupt vectors

symbol used by startup
stack pointer initial value

program start address
constants follow program

Tutorial Introduction

25

Fpecifying Command Line Options

+seg .bsct -b 0 -m 0x100 zpage start address

+seg .data -b0x1000 data start address
\cx\lib\crtsi.hl1l startup with auto-init
acia.o main program

modulel.o module program

+seg .text -bOxf000 -it sets the section attribute
module2.o module program

module3.o module program

\cx\lib\libi._h11
\cx\lib\libm.h11

+seg .const -b Oxffd6
vector.o

+def ___memory=@.bss
+def __ stack=0x00ff

C library (if needed)
machine library

vectors start address
interrupt vectors

symbol used by startup
stack pointer initial value

#
#
#
#
#
#
#
#
#
#
#
#
#
#
In the first case, the initialized data will be located after the first code
segment. In the second case, the -1 option instructs the linker to locate
theinitialized data after the segment marked with this flag. Theinitial-
ized data will be located after the second code segment located at
address 0xF000.

For more information, see “Initializing data in RAM” in Chapter 3and
“ Automatic Data Initialization” in Chapter 6.

Specifying Command Line Options

You specify command line options to cx6811 to control the compilation
process.

To compile and produce arelocatable file named acia.o, type:

cx6811 acia.c

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -l option instructs the compiler driver to
create amixed listing of C code and assembly language code in the file
acia.ls.

To perform the operations described above, enter the command:

cx6811 -v -1 acia.c

26 Tutorial Introduction © 2003 COSMIC Software

Fecifying Command Line Options

When the compiler exits, the following files are left in your current
directory:

» the C sourcefileacia.c
» the C and assembly language listing acia.ls
e theobject module acia.o

It is possible to locate listings and object files in specified directories if
they are different from the current one, by using respectivally the -cl
and -co options:

cx6811 -cl\mylist -co\myobj -1 acia.c

This command will compile the acia.c file, create a listing named
acia.ls in the \mylist directory and an object file named acia.o in the
\myobj directory.

cx6811 allows you to compile more than onefile. The input files can be
C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

cx6811 -v start.s acia.c getchar.c

This command will assemble the start.s file, and compile the two C
source files.

See Chapter 4, “Using The Compiler” for information on these and
other command line options.

© 2003 COSMIC Software Tutorial Introduction 27

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program devel opment
system to perform specia tasks required by various MC68HC11 appli-
cations.

© 2003 COSMIC Software Programming Environments 29

Introduction

Introduction

The 68HC11 COSMIC compiler isan ANSI C compiler that offers sev-
eral extensions which support special requirements of embedded sys-
tems programmers. This chapter provides details aboult:

¢ Modifying the Runtime Startup

 Initializing datain RAM

e Performing Input/Output in C

» The const and volatile Type Qualifiers

e Placing Data Objectsin The Bss Section

» Placing Data Objectsin The Zero Page Section
e Placing Data Objects in the EEPROM Space

* Redefining Sections

e Stack Usage

* Inserting Inline Assembly Instructions

* Referencing Absolute Addresses

e Writing Interrupt Handlers

e Placing Addresses in Interrupt Vectors

* Accessing Internal Registers

» Fast Function Calls

» Interfacing C to Assembly Language

e Cadling aBank Switched Function

* Register Usage

* Heap Management Control with the C Compiler

» Data Representation

30 Programming Environments © 2003 COSMIC Software

Modifying the Runtime Sartup

Modifying the Runtime Startup

The runtime startup module performs many important functions to
establish aruntime environment for C. The runtime startup file included
with the standard distribution provides the following:

Initialization of the bss section if any,

ROM into RAM copy if required,
Initialization of the stack pointer,

_main or other program entry point call, and

An exit sequence to return from the C environment. Most users
must modify the exit sequence provided to meet the needs of their
specific execution environment.

The following is a listing of the standard runtime startup file crts.n11
included on your distribution media. It does not perform automatic data
initialization. A specia startup program is provided, crtsi.h11, whichis
used instead of crts.h1l when you need automatic data initialization.
The runtime startup file can be placed anywhere in memory. Usually,
the startup will be “linked” with the RESET interrupt, and the startup
file may be at any convenient location.

Descrlptlon of Runtime Sartup Code

1 C STARTUP FOR MC68HC11

2 Copyright (c) 1995 by COSMIC Software
3

4 xdef _exit, _ stext

5 xref _main, _ _memory, _ stack

6

7 switch.bss

8 _ sbss:

9 switch.text

10 _ stext:

11 clra ; reset the bss
12 ldx #_sbss ; start of bss
13 bra loop ; start loop

14 zbcl:

15 staa 0,x ; clear byte

16 inx ; next byte

© 2003 COSMIC Software

Programming Environments

31

Modifying the Runtime Sartup

17 loop:

18 cpx #_memory ; up to the end

19 bne zbcl ; and loop

20 lds #_ stack ; initialize stack pointer
21 Jjsr _main ; execute main

22 _exit:

23 bra _exit ; and stay here

24 ;

25 end

_main isthe entry point into the user C program.

__memory isan external symbol defined by the linker as the end of the
bss section. The start of the bss section is marked by the local symbol
shss.

__stack is an external symbol defined by the linker as an absolute
value.

Lines 11 to 19 reset the bss section.

Line 20 sets the stack pointer. You may have to modify it to meet the
needs of your application.

Line 21 callsmain() in the user's C program.

Lines 22 to 23 trap areturn from main(). If your application must return
to amonitor, for example, you must modify thisline.

32 Programming Environments © 2003 COSMIC Software

Initializing data in RAM

Initializing data in RAM

If you have initialized static variables, which are located in RAM, you
need to perform their initialization before you start your C program.
The cInk linker will take care of that: it moves the initialized data seg-
ments after the fir st text segment, or the one you have selected with the
-it option, and creates a descriptor giving the starting address, destina-
tion and size of each segment.

Thetable thus created and the copy of the RAM arelocated in ROM by
the linker, and used to do the initialization. An example of how to do
thisis provided in the crtsi.s file located in the headers subdirectory.

; C STARTUP FOR MC68HC11
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 1995 by COSMIC Software

xdef _exit, _ stext
xref _main, _ memory, _ idesc__ , _ stack

switch.bss

__sbss:
SVX:

dc.w O
sve:

dc.w O

switch.text

__stext:
ldx #_ idesc__ ; descriptor address
Idy 0,x ; start address of prom data
inx ; skip address
inx
ibcl:
lIdaa 0,x ; test flag byte
beq zbss ; no more segment
bpl nobk ; skip bank
inx ; info
inx ; if any
nobk:
stx svx ; save pointer
Idd 3,x ; end address
std sve ; in memory
ldx 1,x ; destination address
dbcl:

© 2003 COSMIC Software Programming Environments

Idab O,y

stab 0,x

inx

iny

cpy sve

bne dbcl

1dx SVX

Idab #5

abx

bra ibcl
zbss:

ldx #_sbss

bra loop
zbcl:

staa 0,x

inx
loop:

cpx #__memory

bne zbcl

Ids #_stack

jsr _main
_exit:

bra _exit

end

; copy from prom

to ram
next byte

last one ?

no, loop again
reload pointer to desc
size of one entry

point to next
and loop

start of bss
start loop

clear byte
next byte

; up to the end

; and loop
initialize stack pointer

execute main

and stay here

entry

crtsi.s performs the same function as described with the crts.s, but with
one additional step. Lines (marked in bold) in crtsi.s include code to
copy the contents of initialized static data, which has been placed in the
text section by the linker, to the desired location in RAM.

For more information, see Chapter 2, “ Generating Automatic Data Ini-
tialization” and Chapter 6, “Automatic Data Initialization”.

34 Programming Environments

© 2003 COSMIC Software

The const and volatile Type Qualifiers

The const and volatile Type Qualifiers

You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

\olatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores avalue in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

NOTE

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) all data objects or variables associated with a memory mapped hard-
wareregister e.g. volatile char PORTD @0x1008;

2) all global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in aninterrupt service routine.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

© 2003 COSMIC Software Programming Environments

Performing Input/Output in C

If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no datainitializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument in the related function. If you declarea
data object of const type and dynamic lifetime at block level, you must
specify its stored value by writing a data initializer. If you specify no
datainitializer, the stored value is undefined.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a variable
whose value may be set by another program.

Examples of data objects declared with type qualifiers are:

char * const x; /* const pointer to char */
int * volatile y; /* volatile pointer to int */
const float pi = 355.0 / 113.0; /* pi is never changed */

Performing Input/Output in C

You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts, sprintf, vprintf and vsprintf. They are
described in chapter 4.

The C source code for these and all other C library functionsisincluded
with the distribution, so that you can modify them to meet your specific
needs. Note that all input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to all input/output library functions. The library is
built in such away that you need only modify getchar and putchar, the
rest of the library isindependent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);

36 Programming Environments © 2003 COSMIC Software

Placing Data Objects in The Bss Section

Placing Data Objects in The Bss Section

The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .bss section. All initialized static data are
placed in the .data section. The bss section is located, by default, after
the data section by the linker.

The run-time startup files, crts.sand crtsi.s, contain code which initial-
izes the bss section space to zero.

The compiler provides a special option, +nobss, which forces uninitial-
ized data to be explicitly located in the .data section. In such a case,
these variables are considered as beeing explicitely initialized to zero.

Placing Data Objects in The Zero Page Section

The zero page section, or “zpage”, refersto data that is accessed in the
internal memory of the MC68HC11 chip and may be accessed with one
byte address; this is the first 256 bytes of memory. Placing initialized
data objectsin the zer o page section optimizes code size and execution
time.

To place data objects selectively into the zero page section, use the type
qualifier @dir when you declare the data object. For example:

@dir char var;

A data object declared this way will be located into the section .bsct.
An externa object name is published via a xref.b declaration at the
assembly language level.

To place data objects into the zero page on a file basis, you use the
#pragma directive of the compiler. The compiler directive:

| #pragma space [] @dir |

instructs the compiler to place all data objects of storage class extern or
static into the zero page for the current unit of compilation (usualy a
file). The section must end with a #pragma space(].

© 2003 COSMIC Software Programming Environments 37

Redefining Sections

The compiler provides a special option, +zpage, which forces the
#pragma directive described above for all files compiled with that
option.

NOTE
The code generator does not check for zero page overflow.

Setting Zero Page Size
You can define the maximum size of the zero page section of your
application at link time by specifying the following options on the
linker command line:

‘ +seg .bsct -m##

where ## represents the size of the zero page section in bytes. Note that
the size of the zero page section can never exceed 256 bytes.

Redefining Sections

The compiler uses by default predefined sections to output the various
component of a C program. The default sections are:

Section | Description
text executable code
.const text string and constants
.data initialized variables
.bss uninitialized variables
.bsct any variable in zero page (@dir)
.eeprom any variable in eeprom (@eeprom)

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

38 Programming Environments © 2003 COSMIC Software

Redefining Sections

where <attribute> is either empty or one of the following sequences:

const
@dir
@eeprom

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly bracesindicating initialized data

A section name is a plain C identifier which does not begin with a dot
character, and which is no longer than 13 characters. The compiler will
prefix automatically the section name with adot character when passing
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the bss section forces the compiler to
produce the memory definitions for al the previous bss declarations
before to switch to the new section.

The following directives:

#pragma section (code)

#pragma section const {string}
#pragma section [udatal]

#pragma section {idata}

#pragma section @dir {zpage}
#pragma section @eeprom {e2prom}

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .code

- strings and constants are redirected to section .string
- uninitialized variables are redirected to section .udata
- initialized data are redirected to section .idata

- zero page variables are redirected to section .zpage

- eeprom variables are redirected to section .e2prom

© 2003 COSMIC Software Programming Environments

39

Fast Function Calls

Note that {name} and [name] are equivalent for constant, zero page
and eeprom sections as they are all considered as initialized.

The following directive:

‘ #pragma section ()

switches back the code section to the default section .text.

Fast Function Calls

When the compiler is invoked with the +fast option, the entry and
return sequences are produced with inline code instead of machine
library function calls. This produces larger but faster code. To produce
selectively such a code for a function, use the type @fast when you
declare the function. A function entry sequence will look like:

pshx
tsx
xgdx
addd #<-#>
xgdx
txs

A function return sequence will look like:

tsx
xgdx
addd #<#>
xgdx
txs
pulx
rts

In al cases, the compiler will shorten these sequences if the size of the
stack frame is small enough, by using a combination of pshx and des
instructions to open the stack frame, and a combination of pulx and

ins instructions to close the stack frame.

40 Programming Environments

© 2003 COSMIC Software

Placing Data Objects in the EEPROM Space

Placing Data Objects in the EEPROM Space

The compiler allows to define a variable as an eeprom location, using
the type qualifier @eeprom. This causes the compiler to produce spe-
cial code when such avariable is modified. When the compiler detects a
write to an egprom location, it calls a machine library function which
performs the actual write. An example of such adefinition is:

| @eeprom char varj; |

To place all data objects from a file into egprom, you can use the
#pragma directive of the compiler. The directive

| #pragma space [] @eeprom |

instructs the compiler to treat all extern and static datain the current file
as eeprom locations. The section must end with a#pragma space|].

NOTE
If you change the location of the default 6811 register map from 0x1000

to some other address, you must also change the address in the eeprom.s
source file, which isin object formin the libm.h11. The source is located
in the libm sub-directory.

The compiler alocates @eeprom variables in a separate section named
.eeprom, which will be located at link time. The linker directive:

+seg .eeprom -b0Oxb600 -m512
var_eeprom.o

will create a segment located at address Oxb600, with a maximum size
of 512 bytes.

NOTE

The code generator cannot check if the final address of an @eeprom
object will be valid after linkage.

© 2003 COSMIC Software Programming Environments 41

Sack Usage

Stack Usage

By default, a function uses the stack for its arguments and local varia-
bles. When the stack sizeistoo small, it is possible to instruct the com-
piler not to use the stack, but a static memory area for arguments and
local variables. The @nostack modifier is used on a function declara-
tion to indicate that this function does not use the stack. The code gen-
erator can be configured to use several different mechanisms. Different
behaviours are selected by the +st0, +st1, +st2 or +st3 flags on the
compiler command line. These options are referred to as the static
models. Note that it is possible to force all functions to use the @nos-
tack modifier with the compiler option +nostk.

SaticModel 0
Each function declared with the @nostack modifier, places its argu-

ments and local variablesin a private memory areaallocated in the .bss
section. This memory area will not be used by any other function, and
thus the only restriction to that model is that such a function should not
call itself recursively, either directly or indirectly.

Satic Model 1
Each function declared with the @nostack modifier, places its argu-
ments and local variables in a private memory area alocated in the
.Jbsct section. This memory areawill not be used by any other function,
and thus the only restriction to that model is that such a function should
not call itself recursively, either directly or indirectly. The linker should
control the .bsct size (-m option).

Satic Modd 2

Each function declared with the @nostack modifier, places its argu-
ments and local variablesin a shared memory area allocated in the .bss
section. The linker will group all the shared areas declared by all such
functions in the application, and will allocate these areas in order to
minimize the total size, by overlapping areas corresponding to exclu-
sive functions. Two functions are exclusive if they don’t call each other
directly or indirectly. Recursive functions are till not allowed.

SaticMode 3
Each function declared with the @nostack modifier, places its argu-

ments and local variables in a shared memory area allocated in the

42 Programming Environments © 2003 COSMIC Software

Referencing Absolute Addresses

.bsct section. The linker will group all the shared areas declared by all
such functions in the application, and will allocate these areas in order
to minimize the total size, by overlapping areas corresponding to exclu-
sive functions. Two functions are exclusive if they don’t call each other
directly or indirectly. Recursive functions are still not allowed. The
linker should control the .bsct size (-m option).

NOTE
When using static models 2 or 3, the compiler reserves the corresponding

memory areas, but does not allocate them. The linker will allocate all
these areas after having rearranged them in order to use the smallest
amount of memory possible. In order to perform this rearrangement, the
linker needs information about all the function calls in the application.
This means that even if all the functions are not declared with the
@nostack modifier, all the source files need to be compiled with the +st2
or +st3 option. Otherwise, the linker may produce incorrect overlaid

Referencing Absolute Addresses

This C compiler allows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give a memory location a symbolic nhame and
associated type, and use it as you would do with any C identifier. This
feature is useful for accessing memory mapped 1/O ports or for calling
functions at known addressesin ROM.

References to absolute addresses have the general form @<address>,
where <address> is avalid memory location in your environment. For
example, to associate an 1/O port at address 0x0 with the identifier
name PORTA, write a definition of the form:

char PORTA @0xO0;

where @0x0 indicates an absolute address specification and not a data
initializer. Since input/output on the MC68HC11 architecture is mem-
ory mapped, performing 1/0 in this way is equivalent to writing in any
given location in memory.

To use the I/O port in your application, write:

© 2003 COSMIC Software Programming Environments 43

Referencing Absolute Addresses

char c;
c = PORTA; /* to read from input port */
PORTA = c; /* to write to output port */

Another solutions is to use a #define directive with a cast to the type of
the object being accessed, such as:

#define PORTA *(char *)0x0

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of adlight lossin portability.
Note that COSMIC C does support the pointer and #define methods of
implementing /O access.

It is also possible to define structures at absolute addresses. For exam-
ple, one can write:

struct acia
{
char status;
char data;
} acia

Using this declaration, references to acia.status will refer to mem-
ory location 0x6000 and acia.data will refer to memory location
0x6001. Thisis very useful if you are building your own custom I/O
hardware that must reside at some location in the 68HC11 memory

map.

Such adeclaration does not reserve any space in memory. The compiler
il creates alabel, using an equate definition, in order to reference the
C object symbolically. This symbol is made public to alow external
usage from any other file.

44 Programming Environments © 2003 COSMIC Software

Accessing Internal Registers

Accessing Internal Registers

The type modifier @port may be used on a data object in conjunction
with an absolute address to improve accessto an internal register. These
input-output registers are seen as memory locations, but bit instructions
are inoperative on extended addressing mode. The @port type modifier
instructs the compiler to load the base address indirectly, allowing effi-
cient bit instructions to be used. When the absolute address is specified,
the base address loaded is obtained from the upper bits of the full
address (0x1000 for an address equal to 0x1021). The PORTB register
may be declared:

| @port char PORTB @0x1004;

The @port modifier may be omitted when the register is accessed as
bytes rather than bits.

All registers are declared in the io.h file provided with the compiler.
Thisfile should be included by a

#include <io.h>

in each file using the input-output registers. Five separate files ioc0.h,
iod3.h, iofl.h, iok4.h and iond.h are provided for the specia
68HC11C0, 68HC11D3/D0, 68HC11F1, 68HC11K 4 and 68HC11N4
processors. They do not use the same set of registers than the standard
family.

All the register names are defined by assembly equates which are made
public. This alows any assembler source to use directly the input-out-
put register names by defining them with an xref directive. All those
definitions are already provided in the io.s files which may be included
in an assembly source by a

include "i10.s"

All these header files assume a default location for the input-output reg-
isters depending on the actual target. This default value may be changed

© 2003 COSMIC Software Programming Environments 45

Inserting Inline Assembly Instructions

by defining the C symbol BASE by a #define directive before the
header file #include:

#define _BASE O
#include <io.h>

The default value of 0x1000 for the register starting address as defined
by thefile <io.h> is changed to 0.

NOTE
The @port modifier is an extension to the ANS standard.

Note that the compiler will access to these registers as standard varia-
bles. In some case of reading or writing some “int” registers, you should
declare an union (with two char and one int) instead of using directly
the I/O register.

Inserting Inline Assembly Instructions

The compiler features two ways to insert assembly instructionsin a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connection with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas

The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

Directive | Description

#pragma asm start assembler block

#pragma endasm end assembler block

The compiler also accepts shorter sequences with the same meaning:

46 Programming Environments © 2003 COSMIC Software

Inserting Inline Assembly Instructions

Directive ‘ Description
#asm start assembler block
#endasm end assembler block

Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the

middle.

The following example shows a correct syntax:

#pragma asm
xref asmvar
#pragma endasm

extern char test;

void func(void)
{
if (test)
#asm
sec
rol
#endasm
else

asmvar

test =
}

iz

/* no need for { */
; set carry bit

; access assembler variable

Inlining with _asm

The _asm() function inserts inline assembly code in your C program.

The syntax is:

| _asm(““string constant”, arguments...);

© 2003 COSMIC Software

Programming Environments 47

Inserting Inline Assembly Instructions

The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments’ follow the standard C rules for
passing arguments.

NOTE

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive callsto _asm().

The string you specify follows standard C rules. For example, carriage
returns can be denoted by the ‘\n’ character.

For example, to produce the following assembly sequence:

xgdx

addd #1000h
xgdx

txs

Jjsr _main

you would write:

_asm(“xgdx\n addd #1000H\nxgdx\ntxs\njsr _main\n’")

The‘\n' character is used to separate the instructions when writing mul-
tiple instructions in the same line.

To copy avalue in the condition register, you write:

_asm(“tba\ntap\n”, varcc);

The varcc variable is passed in the d register, as a first argument. The
_asm sequence then transfers the low byte from the b register to the a
register then to the condition register.

_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

48 Programming Environments © 2003 COSMIC Software

Inserting Inline Assembly Instructions

_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

if (_asm(“tpa\ntab\n) & 0x010) |

alows to test the overflow bit. That way, you can use _asm() to write
equivalents of C functions directly in assembly language.

NOTE
With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the -a option is specified on the code generator. The
assembler input can use lowercase or uppercase mnemonics, and may
include assembler comments.

By default, _asm() is returning an int as any undeclared function. To
avoid the need of several definitions (usually confictuous) when _asm()
is used with different return types, the compiler implements a special
behaviour when a cast is applied to _asm(). In such a case, the cast is
considered to define the return type of _asm() instead of asking for a
type conversion. There is no need for any prototype for the _asm()
function asthe parser verifiesthat the first argument is a string constant.

Inlining Labels

When labels are necessary in the inlined assemby code, the compiler
provides a special syntax alowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, asimple wait loop may be entered as follow:

#asm

Idab #7
$N:

bne b,$L ; loop on the previous label
#endasm

© 2003 COSMIC Software Programming Environments 49

Witing Interrupt Handlers

Writing Interrupt Handlers

A function declared with the type quaifier @interrupt is suitable for
direct connection to an interrupt (hardware or software). @interrupt
functions may not return a value. @interrupt functions are alowed to
have arguments, although hardware generated interrupts are not likely
to supply anything meaningful.

When you define an @interrupt function, the compiler uses the “rti”
instruction for the return sequence.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such adefinition is:

@interrupt void it _handler(void)
{

You cannot call an @interrupt function directly from a C function. It
must be connected with the interrupt vectors table.

NOTE

The @interrupt modifier is an extension to the ANSI standard.

Placing Addresses in Interrupt Vectors

You may use either an assembly language program or a C program to
place the addresses of interrupt handlers in interrupt vectors. The
assembly language program would be similar to the following example:

switch .const

xref handlerl, handler2, handler3
vectorl:dc.w handlerl
vector2:dc.w handler2
vector3:dc.w handler3

end

where handler1 and so forth are interrupt handlers.

50 Programming Environments © 2003 COSMIC Software

Calling a Bank Switched Function

A small C routine that performs the same operation is:

extern void handlerl(), handler2(), handler3(Q);
void (* const vector[]DQO =

{

handlerl,

handler2,

handler3,

3

where handler1 and so forth are interrupt handlers. Then, at link time,
include the following options on the link line:

+seg .const -bOxffd6 vector.o

where vector.o is the file which contains the vector table. This file is
provided in the compiler package. Y ou should modify this vector table
as necessary for your application.

Calling a Bank Switched Function

When using a 68HC11K4 processor or an external bank switching
mechanism, it is possible to call directly afunction whichislocated in a
different bank. To perform the correct call, it is necessary to declare the
function with the @far type modifier. This extension does not modify

the code for the function itself, but modifies the way the function is
caled.

NOTE

Thelibraries are not built as @far functions and should not be located in
abanked areg, if they need to be accessed from any bank.

An example of such adefinition is:

@far int func(void)
{

© 2003 COSMIC Software Programming Environments 51

Calling a Bank Switched Function

The compiler uses special machine library functions to call a banked
function. These library functions are dedicated to the 6BHC11CO0 and
the 68HC 11K 4 processors and use the first window to access the target
function. It is necessary to modify these function to adapt this mecha
nism to an external bank switching. All theselibrary functionsarein the
files named wecalc.s and wealk.s respectively in the machine library.

When linking a bank switched application, several options must be used
to configure the linker properly:

-b should be specified with the physical address for each
code segment or bank

-bs is automatically set with the value 13 for the 68HC11K4
processor. The bank number extracted by the linker and
copied into the window base register, then points to a 8K
bytes block. This option is located on the command line.

-m should be specified with the maximum size of each seg-
ment or bank. It is 0x1fff for the 68HC11K4.

-0 should be specified with the logical starting address for
each code segment or bank. It normally is the window
base address in the 64K limits.

The switching functions have to be linked in the non switched part of
the application. The full machine library should be linked in the non
switched part of the application for efficiency, but it may duplicated in
each bank for space reasons.

The bank switching mechanism uses static pointer called ¢_descc (for
the 68HC11CO0) or ¢c_desck (for the 68HC11K 4). This pointer points at
amemory location called acall_descriptor which isinitialized with the
actual return address and the return bank number. For each function
called through the bank switching mechanism, the compiler creates a
pointer to the @far function, thefirst word contai ns the bank number on
16 hits, and the second word contains the address on 16 bits. Thisis a
far pointer; it may be constructed in C as a pointer to afar function.

52 Programming Environments © 2003 COSMIC Software

Calling a Bank Switched Function

Assuming we are building an application with a root segment at
0xE000 and a window at 0x8000, the link command file should look
like:

+seg -text -b 0x10000 -o 0x8000 -m Ox1ffF
funcl.o func2.o0 func3.o

+seg -text -b 0x11000 -o 0x8000 -m Ox1fff
func4.o funcb5.o0 func6.o

+seg .text -b 0xe000 -o 0xe000

main.o libm.h11

given two banks, the first one obtained from funcl, func2 and func3
linked at physical address 0x10000, the second obtained from func4,
func5 and func6 linked at physical address 0x11000. The window
mechanism has to be initialized with the first window at 0x8000. The
code to perform this initialization has to be located in the root segment,
for instance at the beginning of the main function. The compiler pro-
vides afunction named _wsetup(). You can call it from your C program.
It sets the first window with a 8K size, assigns all the PORTG bits for
extended addressing, and sets the window start address with the value
of the external symbol _wbase, which has to be set by the linker to the
starting address of the window with a +def directive such as:

+seg .-text -b 0x10000 -o 0x80000 -m Ox1FFF
+def _ wbase=@.text

placed just after the opening of a bank text segment. You can use your
own initialization mechanism. In that case, you don’'t need to define this
symbol.

The linker should thus be called with the following options:

clnk -o appli.hll -bs13 appli.lkf

© 2003 COSMIC Software Programming Environments 53

Interfacing C to Assembly Language

Interfacing C to Assembly Language

The C cross compiler translates C programs into assembly language
according to the specifications described in this section.

You may write externa identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘' character to each identifier.

The compiler places function code in the .text section. Function codeis
not to be altered or read as data. External function names are published
viaxdef declarations.

Literal data such as strings, float or long constants, and switch tables,
are normally generated into the .const section. An option on the code
generator allows such constants to be produced in the .text section

The compiler generates initialized data into the .data section. External
data names are published via xref declarations. Data you declare to be
of “congt” type by adding the type qualifier const to its base typeis nor-
mally generated into the .const section. Data declared with the @dir
space modifier will be generated into the .bsct section. Uninitialized
data are normally generated into the .bss section , unless forced to the
.data section by the compiler option +nobss.

Section | Declaration | Reference
.bsct @dir char i; xdef
.data intinit=1 xdef
.bss int uninit xdef
text char putchar(c); | xdef
Any of above | extern int out; xref

Function calls are performed according to the following:

1) Arguments are moved onto the stack from right to left. Unless the
function returns a structure, the first argument is stored in the d
register if its size is less than or equal to the size of anint, or ind
and 2,x if itstypeislong or unwidened float.

54 Programming Environments © 2003 COSMIC Software

Register Usage

2) A data space address is moved onto the stack if a structure or dou-
ble return areais required.

3) Thefunction iscalled viaajsr _func instruction. If the called is an
@far function, the calling sequence is different. It is detailed in
the next paragraph.

4) The arguments to the function are popped off the stack.

Register Usage

Except for the return value, the registers d, y and the condition codes
are undefined on return from afunction call. The return valueisin d if
it is of type char widened to short, short, integer or pointer to.... The
return value isin the register d and the memory location at 2,x if it is of
typelong or float. The d register holds the low order word.

Sack Model
Stack frames are maintained by each C function, using x as a frame

pointer. On entry to a function, if less than three bytes are needed for
locals, the calling sequence is replaced by a shorter sequence consisting
of a pshx instruction followed by other instructions depending on the
sizerequired. If automatics are needed, the sequence:

jsr c_ents
-byte <#>

will reserve <#> bytes onto the stack. This sequenceis:

Jsr c_kents
-byte <#>

if the first argument isin the d register as described above. The stack
pointer is set to the beginning of the area reserved for automatic data.
This is done because of addressing mode characteristics of the
MC68HCL11. The assembler symbol OFST is set to the size of the space
needed for automatics, and arguments are at OFST+4,x, OFST+6,x, and
so forth. Auto storage is on the stack at OFST-1,x and down. If no auto-
matics and no arguments are used, the stack frame is not built. To
return, the sequence:

© 2003 COSMIC Software Programming Environments 55

Register Usage

Ids 0,x
pulx
rts

will restore the previous context. Functions that do not have any argu-
ments or autos, and do not use any temporary storage (required to per-
form operations on structure data or type cast float data, for example)
do not reference the frame pointer x and do not stack it.

Sack Representation
The diagrams below show the stack layout at function entry func. In this

example, func has three arguments: argl, arg2 and arg3. The first dia-
gram describes cases where argl is in the d register. The second dia-
gram describes cases where argl is not in the d register. In both cases,
arguments are assumed to be widened, so char is widened to short and
float to double.

arglisind
‘ VFP ‘ locals argl ‘savedx ‘ @return arg2 ‘ arg3 |
f t t
X OFST+0 OFST+6
arglnotind
‘ VFP ‘ locals saved X ‘ @return argl ‘ arg2 | arg3 ‘
f t t
X OFST+0 OFST+4

current frame pointer is in register X
current stack pointer is in register S

The VFP (Virtual Frame Pointer) is built by the entry subroutine or
sequence, and points to the location containing the frame pointer of the
previous context (saved X). It is used to accelerate the return sequence
(Ids 0,x) and to help the code generator to compute local variable
addresses. It is not built if it is not needed, depending on the function
content, and on the selection of the return sequence.

56 Programming Environments © 2003 COSMIC Software

Register Usage

Satic Models
When using any one of the static models, the compiler creates a mem-

ory area and a symbol used to access this area. The symbol name is
obtained by appending the .L suffix to the function name. This symbol
ismade public if the function is not declared with the static C keyword.
The first argument may still be passed in register, and will be stored at
the function entry. Such a function declaration:

@nostack int func(int argl, int arg2, int arg3)

will create the following memory layout:

locals argl arg2 arg3

f _func.L

© 2003 COSMIC Software Programming Environments 57

Heap Management Control with the C Compiler

Heap Management Control with the C Compiler

The name heap designates a memory area in which are allocated and
deallocated memory blocks for temporary usage. A memory block is
allocated with the malloc() function, and is released with the free()
function. The malloc() function returns a pointer to the allocated area
which can be used until it is released by the freg() function. Note that
the freg() function has to be called with the pointer returned by malloc.
The heap allocation differs from alocal variable alocation because its
lifeis not limited to the life of the function performing the allocation.

In an embedded application, the malloc-free mechanism is available
and automatically set up by the compiler environment and the library.
But it is possible to control externally the heap size and location. The
default compiler behaviour is to create a data area containing applica-
tion variables, heap and stack in the following way:

initialized variables uninitialized variables heap growing upward and
(data segment) (bss segment) stack growing downward
heap starts here T stack starts here f

The heap start is the bss end, and is equa to the __memory symbol
defined by the linker with an appropriate +def directive. The stack
pointer is initialized by the application startup (crts.s) to an absolute
value, generaly the end of available memory, or a value relative to the
end of the bss segment (for multi-tasking purposes for instance). The
heap grows upwards and the stack downwards until collision may
occur.

The heap management functions maintain a global pointer named heap
pointer, or simply HP, pointing to the heap top, and a linked list of
memory blocks, free or alocated, in the area between the heap start and
the heap top. In order to be able to easily modify the heap implementa-
tion, the heap management functions use a dedicated function to move
the heap pointer whenever necessary. The heap pointer is initialized to
the heap start: the heap is initially empty. When malloc needs some
memory and no space is available in the free list, it calls this dedicated
function named _sbreak to move the heap pointer upwards if possible.

58 Programming Environments © 2003 COSMIC Software

Heap Management Control with the C Compiler

_shreak will return aNULL pointer if thismoveis not possible (usually
this is because the heap would overlap the stack). Therefore it is possi-
ble to change the heap default location by rewriting the _sbreak func-
tion.

The default _sbreak function provided by the library is asfollows:

/* SET SYSTEM BREAK
*/
void *sbreak(int size)
{
extern char _memory;
static char *_brk = NULL;/* memory break */
char *obrk, yellow[40];

it (1_brk) /* initialize on first call */
_brk = & memory;

obrk = _brk; /* old top */

_brk += size; /* new top */

if (yellow = _brk || _brk & memory)

/* check boundaries */

_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
3

return (obrk); /* return new area start */

3

Theyellow array is used to calcul ate the stack pointer value to check the
heap limits. This array is declared as the last local variable, so its
address is almost equal to the stack pointer once the function has been
entered. It is declared to be 40 bytes wide to allow for some security
margin. If the new top is outside the authorized limits, the function
returns a NULL pointer, otherwise, it returns the start of the new allo-
cated area. Note that the top variable _brkis a static variable initialized
to zero (NULL pointer). It is set to the heap start on the first cal. It is
also possible to initiaize it directly within the declaration, but in this
case, we create an initialized variable in the data segment which needs
to beinitialized by the startup. The current code avoids such arequire-
ment by initializing the variable to zero (in the bss segment), which is
simply done by the standard startup sequence.

© 2003 COSMIC Software Programming Environments 59

Heap Management Control with the C Compiler

M odifying The Heap L ocation
Itiseasy to modify the sbreak function in order to handlethe heapin a
separated memory area. The first example shown below handles the
heap area in a standard C array, which will be part of the application
variables.

The heap areais declared as an array of char simply named heap. The
algorithm is mainly the same, and once the new top is computed, it is
compared with the array limits. Note that the array is declared as a static
local variable. It is possible to have it declared as a static global varia-
ble. If you want it to be global, be careful on the selected name. You
should start it witha“_" character to avoid any conflict with the applica-
tion variables. The modified _sbreak function using an array is as fol-
lows:

/* SET SYSTEM BREAK IN AN ARRAY
*/
#define HSIZE 800 /* heap size */

void *sbreak(int size)
{
static char *_brk = NULL;/* memory break */
static char heap[HSIZE];/* heap area */
char *obrk;

if (1_brk) /* initialize on first call */
_brk = heap;

obrk = _brk; /* old top */

_brk += size; /* new top */

if (&heap[HSIZE] <= _brk || _brk < heap)

/* check boundaries */

_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */

}

If you need to place the heap array at a specific location, you need to
locate this module at a specific address using the linker options. In the
above example, the heap array will be located in the .bss segment, thus,
complicating the startup code which would need to zero two bss sec-
tions instead of one. Compiling this function, with the +nobss option,

60 Programming Environments © 2003 COSMIC Software

Heap Management Control with the C Compiler

will force allocation of the heap, in the data segment and you can locate
it easily with linker directives as:

+seg .data -b 0x8000 # heap start
sbreak.o # sbreak function

It is aso possible to handle the heap area outside of any C object, just
by defining the heap start and end values using the linker +def direc-
tives. Assuming these symbols are named _heap_start and _heap_end
in C, it ispossible to define them at link time with such directives:

+def __ heap_start=0x8000# heap start
+def __heap_end=0xA000 # heap end

NOTE

Snce the initial content of the area can be undefined, the -ib option can
be specified to not include the segment in the automatic RAM initializa-
tion.

You need to add an extra ‘_' character when defining a C symbol at link
time to match the C compiler naming conventions.

The modified _sbreak function isasfollows:

/* SET SYSTEM BREAK IN MEMORY
*/
void *sbreak(int size)
{
extern char _heap_start, _heap_end;/* heap limits */
static char *_brk = NULL;/* memory break */

char *obrk;

it (1_brk) /* initialize on first call */
_brk = heap_start;

obrk = _brk; /* old top */

_brk += size; /* new top */

if (& heap_end <= _brk || _brk < & heap_start)
{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */

}

© 2003 COSMIC Software Programming Environments 61

Heap Management Control with the C Compiler

Note that it is possible to use this _sbreak function as a malloc equiva-
lent function with some restrictions. The malloc function should be
used when the allocated memory has to be released, or if the application
has no idea about the total amount of space needed. If memory can be
allocated and never released, the free mechanism is not necessary, nor
the linked list of memory blocks built by malloc. In that case, simply
rename the _sbreak function as malloc, regardless of its implementa
tion, and you will get a very efficient and compact malloc mechanism.
You may do the renaming in the function itself, which needs to be rec-
ompiled, or by using a#define at C level, or by renaming the function at
link time with a+def directive such as:

+pri # enter a private region

+def _malloc=__sbreak # defines malloc as _sbreak

+new # close region and forget malloc
libi.h1l1 # load library containing _sbreak

This sequence has to be placed just before loading libraries, or before
placing the module containing the _sbreak function. The private region
is used to forget the _malloc reference once it has been aiased to
_shbreak.

62 Programming Environments © 2003 COSMIC Software

Data Representation

Data Representation

Data objects of type char are stored as one byte:

7 0

Char representation

Data objects of type short int, int and 16 bits pointers are stored as two
bytes, more significant byte first:

15 87 0

Most Significant Byte _] L Less Significant Byte
Short, Int, 16 bits Pointer

Data objects of type long integer and 32 bits pointer are stored as four
bytes, in descending order of significance:

31 24 23 16 15 8 7 0

Most Significant Byte] L Less Significant Byte
Long, 32 bits Pointer representation

Data objects of type float and double are represented as for the pro-
posed | EEE Floating Point Standard; four bytes (for float) or eight bytes
(for double) stored in descending order of significance. The |EEE rep-
resentation is: most significant bit is one for negative numbers, and zero
otherwise; the next eight bits (for float) or eleven bits (for double) are
the characteristic, biased such that the binary exponent of the number is
the characteristic minus 126 (for float) or 1022 (for double); the remain-
ing bits are the fraction, starting with the weighted bit. If the character-
istic is zero, the entire number is taken as zero, and should be all zeros
to avoid confusing some routines that do not process the entire number.
Otherwise there is an assumed 0.5 (assertion of the weighted bit) added
to al fractions to put them in the interval [0.5, 1.0). The value of the

© 2003 COSMIC Software Programming Environments

Data Representation

number is the fraction, multiplied by -1 if the sign bit is set, multiplied
by 2 raised to the exponent.

31 30 23 22 0

L Sign L Characteristic L Mantissa
Float representation

63 62 52 51 0

L Sign\— Characteristic L Mantissa
Double representation

64 Programming Environments © 2003 COSMIC Software

CHAPTER

A

Using The Compiler

This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describesits options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

* Invoking the Compiler

* File Naming Conventions
» Generating Listings

» Generating an Error File
e CLibrary Support

e Descriptions of C Library Functions

© 2003 COSMIC Software Using The Compiler 65

Invoking the Compiler

Invoking the Compiler

To invoke the cross compiler, type the command cx6811, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cx6811 [options] <files>.[c|s]

cx6811 is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix *.s". You may specify multiple input files with any com-
bination of these suffixesin any order.

If you do not specify any command line options, cx6811 will compile
your <files> with the default options. It will also write the name of each
fileasitis processed. It writes any error messagesto STDERR.

The following command line:

cx6811 acia.c

compiles and assembles the acia.c C program, creating the rel ocatable
program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages’, lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cx6811 processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

66 Using The Compiler © 2003 COSMIC Software

Invoking the Compiler

assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+' that is part of the option name.

Compiler Command Line Options
The cx6811 compiler accepts the following command line options, each

of which is described in detail below:

cx6811 [options] <Files>
-a*> assembler options
-ce* path for errors
-cl* path for listings
-co* path for objects
-d*> define symbol
-ex prefix executables
-e create error file
-f* configuration file
-g*> code generator options
-1*> path for include
-1 create listing
-no do not use optimizer
-0*> optimizer options
-p*> parser options
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-V verbose
-X do not execute
+*> select compiler options

-ar> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using
The Assembler”, for the list of all accepted options.

-ce* specify a path for the error files. By default, errors are cre-
ated in the same directoy than the source files.

© 2003 COMIC Software Using The Compiler

67

Invoking the Compiler

-cl*

-CO*

-g*n

_g*>

—j*>

-nNo

68 Using The Compiler

specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

specify a path for the object files. By default, objects are
created in the same directoy than the source files.

specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

log errors from parser in afile instead of displaying them
on the terminal screen. The error file name is defaulted to
<file>.err, and is created only if there are errors.

use the compiler driver’s path as prefix to quickly locate
the executable passes. Default is to use the path variable
environment. This method is faster than the default behav-
ior but reduces the command line lenght.

specify * asthe name of aconfiguration file. Thisfile con-
tains alist of options which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cx6811.cxf in
the compiler directory as specified in the installation proc-
ess. See Appendix B, “Modifying Compiler Operation”
for more information.

specify code generation options. Up to 60 options can be
specified. See Appendix D, “Compiler Passes’, for thelist
of all accepted options.

define include path. You can define up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

merge C source listing with assembly language code; list-
ing output defaultsto <file>.Is.

do not use the optimizer.

© 2003 COSMIC Software

Invoking the Compiler

-0*> specify optimizer options. Up to 60 options can be speci-
fied. See Appendix D, “Compiler Passes’, for the list of
all accepted options.

-p*> specify parser options. Up to 60 options can be specified.
See Appendix D, “Compiler Passes’, to get the list of al
accepted options.

-S create only assembler files and stop. Do not assemble the
files produced.
-Sp create only preprocessed files and stop. Do not compile

files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

-t* specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

-V be “verbose’. Before executing acommand, print the com-
mand, along with its arguments, to STDOUT. The default
is to output only the names of each file processed. Each
name is followed by a colon and newline.

-X do not execute the passes, instead write to STDOUT the
commands which otherwise would have been performed.

+*> select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 60
compiler options on the command line. The following
documents the available options as provided by the default
configuration file:

+alu generate code for processors supporting an arithmetic unit
(M and N families). Thisimplies to use the specific librar-
ies built to support the arithmetic unit.

+c0 generate bank switching code for the 68HC11CO proces-
sor.

© 2003 COMIC Software Using The Compiler 69

+fast

+nobss

+nocst

+nostk

+nowiden

+rev

+sprec

+st0

70 Using The Compiler

produce debug information to be used by the debug utili-
ties provided with the compiler and by any external debug-
ger.

produce fast function entry and exit sequences. For more
information, see “Fast Function Calls’ in Chapter 3.

do not use the .bss section for variables allocated in exter-
nal memory. By default, such uninitialized variables are
defined into the .bss section. This option is useful to force
al variablesto be grouped into a single section.

output literals and contants in the code section .text instead
of the specific section .const.

force al functions not to use the stack. The +st options
should be used to select the compiler behaviour. For more
information, see “ Sack Usage” in Chapter 3.

do not widen char and float arguments. By default, char
arguments are promoted to int before to be passed as argu-
ment.

reverse the hitfield filling order. By default, bitfields are
filled from the Less Significant Bit (LSB) towards the
Most Significant Bit (MSB) of a memory cell. If the +rev
option is specified, bitfields are filled from the msb to the
Ish.

force all floating point arithmetic to single precision. If this
option is enabled, al floats, doubles and long doubles are
treated as float, and calculation are made in single preci-
sion.

enable static model 0. Functions declared with the @nos-
tack modifier will use aprivate arealocated in the .bss sec-
tion for their arguments and local variables. For more
information, see “ Sack Usage” in Chapter 3.

© 2003 COSMIC Software

Invoking the Compiler

+stl enable static model 1. Functions declared with the @nos-
tack modifier will use a private area located in the .bsct
section for their arguments and local variables. For more
information, see “ Sack Usage” in Chapter 3.

+st2 enable static model 2. Functions declared with the @nos-
tack modifier will use a shared arealocated in the .bss sec-
tion for their arguments and local variables. For more
information, see“ Sack Usage” in Chapter 3.

+st3 enable static model 3. Functions declared with the @nos-
tack modifier will use a shared area located in the .bsct
section for their arguments and local variables. For more
information, see “ Sack Usage” in Chapter 3.

+zpage force al data to be defined into the .bsct section. This
option assumes that the full application declares less than
the available space in the .bsct section. The linker should
be configured to check the size. For more information, see
“Placing Data Objects in The Zero Page Section” in
Chapter 3.

© 2003 COMIC Software Using The Compiler 71

File Naming Conventions

The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted as input or generated as output.

File Naming Conventions

Program Input File Name | Output File Name
cp6811 <file>.c <file>.1
cg6811 <file>.1 <file>.2
c06811 <file>.2 <file>.s
error listing <file>.c <file>.err
assembler listing <file>.[c|s] <file>.Is
C header files <file>.h
ca6811 <file>.s <file>.0
source listing <file>.s <file>.ls
clnk <file>.0 name required
cbank <file> STDOUT
chex <file> STDOUT
clabs <file.h12> <files>.la
clib <file> name required
cobj <file> STDOUT
cv695 <file> <file>.695

72 Using The Compiler

© 2003 COSMIC Software

Generating Listings

Generating Listings

You can generate listings of the output of any (or al) the compiler
passes by specifying the -I option to cx6811. You can locate the listing
filein adifferent directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C source file acia.c with the -| option:

| cx6811 -1 acia.c

Generating an Error File

You can generate afile containing all the error messages output by the
parser by specifying the -e option to the cx6811 compiler. You can
locate the error file in a different directory by using the -ce option. For
example, you would type:

| cx6811 -e prog.c

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Return Status

cx6811 returns success if it can process al files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

Examples

To echo the names of each program that the compiler runs:

| cx6811 -v file.c |

To save the intermediate files created by the code generator and halt
before the assembler:

| cx6811 -s file.c |

© 2003 COMIC Software Using The Compiler 73

C Library Support

C Library Support

This section describes the facilities provided by the C library. The C
cross compiler for MC68HC11 includes all useful functions for pro-
grammers writing applications for ROM-based systems.

How C Library Functions are Packaged

The functionsin the C library are packaged in three separate sub-librar-
ies; one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library) and one that pro-
vides full floating point support (the floating point library). If your
application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
theinteger library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and

entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library asit is recog-
nized by the compiler itself.

Linking Librarieswith Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

Integer Library Functions
The following table lists the C library functions in the integer library.

_checksum islower memset strcspn
abs isprint printf strlen
atoi ispunct putchar strncat
atol isqrt puts strncmp
calloc isspace rand strncpy
div isupper realloc strpbrk
eepcpy isxdigit sbreak strrchr
eepset labs scanf strspn
free Idiv setjmp strstr
getchar longjmp sprintf strtol
gets Isqrt srand tolower

74 Using The Compiler © 2003 COSMIC Software

C Library Support

isalnum malloc sscanf toupper

isalpha memchr strcat vprintf

iscntrl memcmp strchr vsprintf
isdigit memcpy strcmp

isgraph memmove strcpy

Floating Point Library Functions
Thefollowing table liststhe C library functionsin the float library.

acos exp modf sscanf
asin fabs pow strtod
atan floor printf tan
atan2 fmod scanf tanh
atof frexp sin vprintf
ceil Idexp sinh vsprintf
cos log sprintf

Common I nput/Output Functions
Six of the functions that perform stream input/output are included in
both the integer and floating point libraries. The functionalities of the
versions in the integer library are a subset of the functionalities of their
floating point counterparts. The versions in the integer library cannot
print or manipulate floating point numbers. These functions are: printf,
scanf, sprintf, sscanf, vprintf and vsprintf.

Functions I mplemented as M acros

Five of the functionsin the C library are actually implemented as “mac-
ros’. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are
defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: max, min, va_arg, va end, and
va_start.

Including Header Files
If your application calls a C library function, you must include the

header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that all the
expected arguments are properly evaluated. You do this by writing a

© 2003 COMIC Software Using The Compiler

C Library Support

preprocessor directive of the form:

#include <header_name>

in your program, where <header _name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<io.h> - Header file for input-output registers. Each register has an
upper-case name which matches the standard Motorola definition. They
are mapped at a base address defaulted to 0x1000. Specifics 1/0 header
files are provided for the MC68HC11K4, MC68HCI11F1 and
MC68HC11CO respectively called iok4.h, iof1.h and ioc0.h.

<limits.h> - Header file for limit constants of the compiler.

<math.h> - Header file for mathematical functions: acos, asin, atan,
atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, Idexp, log, 10910,
modf, pow, sin, sinh, sgrt, tan and tanh.

<setjmp.h> - Header file for nonlocal jumps: setjmp and longjmp

<stdarg.h> - Header file for walking argument lists: va_arg, va_end
and va_start. Use these macros with any function you write that must
accept a variable number of arguments.

<stddef.h> - Header file for types: size t, wchar_t and ptrdiff_t.

<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts and sprintf.

76 Using The Compiler © 2003 COSMIC Software

Descriptions of C Library Functions

<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
calloc, div, exit, free, labs, Idiv, malloc, rand, realloc, srand, strtod, str-
tol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, stremp, strepy, strespn, strien,
strncat, strncmp, strnepy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file, since int is the function
return type that the compiler assumed by default, are; isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, sbreak, tolower and toupper.

Descriptions of C Library Functions

The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.

© 2003 COMIC Software Using The Compiler 77

CLibrary - _asm

asim

Description
Generate inline assembly code
Syntax
/* no header file need be included */
_asm(<string constant>, ...)
Function

_asm generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. If extra arguments
are specified, they are processed as for a standard function. If argu-
ments are stacked, they are popped off just after the inline code pro-
duced.

For more information, see “Inserting Inline Assembly Instructions” in
Chapter 3.

Return Value
Nothing, unless _asm() is used in an expression. In that case, normal

return conventions must be followed. See “ Register Usage” in Chapter
3.

Example
The sequence tsx; pshx, may be generated by the following call:

_asm(“\ttsx\n\tpshx\n);
Notes

_asm() is not packaged in any library. It is recognized (and its argument
passed unchanged) by the compiler itself.

78 Using The Compiler © 2003 COSMIC Software

C Library - _wsetup

_WSetup

Description
Initialize K4 window registers

Syntax

/* no header file need to be included */
_wsetup(void)

Function
_wsetup initializes the window mechanism of the 68HC11K 4 proces-
sor. It usesthe external symbol _ wbase to know the starting address of
the window, and sets the first window for a 8K window starting win-
dow from that address. This symbol is usually defined at link time.

For more information, see “Calling a Bank Switched Function” in
Chapter 3

Return Value
Nothing

Example
To set the window mechanism at the beginning of the application:

_wsetup(Q);

Notes
_wsetup() is packaged in the machine library.

© 2003 COMIC Software Using The Compiler 79

C Library - abort

abort

Description
Abort program execution

Syntax

#include <stdlib.h>
void abort(void)

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also

exit

Notes
abort is amacro equivalent to the function name exit.

80 Using The Compiler © 2003 COSMIC Software

C Library - abs

abs

Description
Find absolute value

Syntax

#include <stdlib.h>
int abs(int i)

Function
abs obtains the absolute value of i. No check is made to see that the

result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “7);

See Also
labs, fabs

Notes
absis packaged in the integer library.

© 2003 COMIC Software Using The Compiler 81

C Library - acos

acCos

Description
Arccosine

Syntax

#include <math.h>
double acos(double x)

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If X is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also

asin, atan, atan2

Notes
acos is packaged in the floating point library.

82 Using The Compiler © 2003 COSMIC Software

CLibrary - asin

asin

Description
Arcsine

Syntax

#include <math.h>
double asin(double x)

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If x is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 83

C Library - atan

atan

Description
Arctangent

Syntax

#include <math.h>
double atan(double x)

Function
atan computes the angle in radians; the tangent of which isx, atan com-
putes the angle in radians; the tangent of which is x, to full double preci-
sion.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
adouble floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of avector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

84 Using The Compiler © 2003 COSMIC Software

C Library - atan2

atan?

Description
Arctangent of y/x

Syntax

#include <math.h>
double atan2(double y, double x)

Function
atan2 computes the angle in radians the tangent of which isy/x to full

double precision. If y is negative, the result is negative. If X is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed

as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of avector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also

acos, asin, atan

Notes
atan2 is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 85

C Library - atof

atof

Description
Convert buffer to double

Syntax

#include <stdlib.h>
double atof(char *nptr)

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+[-]d*[.d*][e[+]-]dd*]

where d isany decimal digit and eisthe character ‘€ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to adouble at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

86 Using The Compiler © 2003 COSMIC Software

C Library - atoi

atol

Description
Convert buffer to integer

Syntax

#include <stdlib.h>
int atoi(char *nptr)

Function
atoi convertsthe string at nptr into an integer. The string is taken as the

text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is| or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-

ble characters, zero is returned.

Example
Toread a string from STDIN and convertittoanint at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

© 2003 COMIC Software Using The Compiler

87

C Library - atol

atol

Description
Convert buffer to long

Syntax

#include <stdlib.h>
long atol (char *nptr)

Function
atol convertsthe string at nptr into along integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is| or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero isreturned.

Example
To read astring from STDIN and convert ittoalong |:

gets(buf);
1 = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

88 Using The Compiler © 2003 COSMIC Software

C Library - _checksum

_checksum

Description
Verify the recorded checksum

Syntax

| int _checksum(Q)

Function
_checksum scans the descriptor built by the linker and controls that the
computed checksum is equal to the one expected.

For more information, see “ Checksum Computation” in Chapter 6.

Return Value
_checksum returns O if the checksum is correct, or avalue different of O
otherwise.

Example
if (_checksumQ))
abort();

Notes
The descriptor is built by the linker only if the _checksum function is

called by the application, even if there are segments marked with the
-ck option.

_checksumis packaged in the integer library.

© 2003 COMIC Software Using The Compiler 89

C Library - calloc

calloc

Description
Allocate and clear space on the heap
Syntax
#include <stdlib.h>
void *calloc(int nelem, int elsize)
Function

calloc alocates space on the heap for an item of size nbytes, where
nbytes = nelem * elsize. The space alocated is guaranteed to be at least
nbytes long, starting from the pointer returned, which is guaranteed to
be on a proper storage boundary for an object of any type. The heap is
grown as necessary. If space is exhausted, calloc returns a null pointer.
The pointer returned may be assigned to an object of any type without
casting. The alocated spaceisinitialized to zero.

Return Value
calloc returns a pointer to the start of the allocated cell if successful;
otherwiseit returns NULL.

Example
To allocate an array of ten doubles:

double *pd;
pd = calloc(10, sizeof (double));

See Also
free, malloc, realloc

Notes
calloc is packaged in the integer library.

90 Using The Compiler © 2003 COSMIC Software

C Library - ceil

call

Description
Round to next higher integer

Syntax

#include <math.h>
double ceil(double x)

Function
ceil computes the smallest integer greater than or equal to x.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed asa

double floating value.

Example
X ceil(xX)
5.1 6.0
5.0 5.0
0.0 0.0
-5.0 -5.0
-5.1 -5.0
See Also
floor
Notes

ceil is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 91

C Library - cos

COS

Description
Cosine

Syntax

#include <math.h>
double cos(double Xx)

Function
cos computes the cosine of X, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of cosis 1.

Return Value
cos returns the nearest internal representation to cos(x) in the range
[0, pi], expressed as a double floating value. A large argument may
return a meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);
See Also
sin, tan
Notes

cosis packaged in the floating point library.

92 Using The Compiler © 2003 COSMIC Software

C Library - cosh

cosh

Description
Hyperbolic cosine

Syntax

#include <math.h>
double cosh(double x)

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a

double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moaivre's theorem to compute (cosh x + sinh x) to the nth

power:
demoivre = cosh(n * x) + sinh(n * x);

See Also
exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 93

C Library - div
div

Description
Divide with quotient and remainder

Syntax

#include <stdlib.h>
div_t div(int numer, int denom)

Function
div divides the integer numer by the integer denom and returns the quo-
tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

div_t result;
result = div(time, 60);

min = result._quot;
sec result.rem;

See Also
Idiv

Notes
divis packaged in the integer library.

94 Using The Compiler © 2003 COSMIC Software

C Library - eepcpy

eepepy

Description
Copy abuffer to an eeprom buffer

Syntax

#include <string.h>
void *eepcpy(void *sl1, void *s2, unsigned int n)

Function
eepcpy copies the first n characters starting at location s2 into the eep-

rom buffer beginning at s1.

Return Value
eepcpy returns sl.

Example
To place “first string, second string” in eepbuf[]:

eepcpy(eepbuf, “first string”, 12);
eepcpy(eepbuf + 13, “, second string”, 15);

See Also
eepset, eepera

Notes
eepcpy is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 95

C Library - eepera
eepera

Description
Erase the full eeprom space

Syntax

void eepera(void)

Function
eeper a erases the full eeprom space with the global erase sequence. It
does not erase the config register.

Return Value
Nothing.

Example
To erase the full eeprom space:

eepera();

See Also
eepset, eepcpy

Notes
eepera is packaged in the machine library.

96 Using The Compiler © 2003 COSMIC Software

C Library - eepset

eepset

Description
Propagate fill character throughout eeprom buffer

Syntax

#include <string.h>
void *eepset(void *s, int c, unsigned int n)

Function
eepset floods the n character buffer starting at eeprom location s with

fill character c. The function waits for al bytes to be programmed.

Return Value
eepset returns s.

Example
To flood a 512 byte eeprom buffer with NULSs:

eepset(eepbuf, °\0”, BUFS1Z2);

See Also
eepcpy, eepera

Notes
eepset is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 97

C Library - exit

exit

Description
Exit program execution

Syntax

#include <stdlib.h>
void exit(int status)

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the call to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit isin the startup module.

98 Using The Compiler © 2003 COSMIC Software

C Library - exp

exp

Description
Exponential

Syntax

#include <math.h>
double exp(double x)

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a

double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(xX) - exp(-x)) /7 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 99

C Library - fabs
fabs

Description
Find doubl e absolute value

Syntax

#include <math.h>
double fabs(double x)

Function
fabs obtains the absolute value of x.
Return Value
fabs returns the absolute value of x, expressed as a double floating
value.
Example
X fabs(x)
5.0 5.0
0.0 0.0
-3.7 3.7
See Also
abs, labs
Notes

fabsis packaged in the floating point library.

100 Using The Compiler © 2003 COSMIC Software

C Library - floor

floor

Description
Round to next lower integer

Syntax

#include <math.h>
double floor(double x)

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a

double floating value.

Example
X floor(x)
5.1 5.0
5.0 5.0
0.0 0.0
-5.0 -5.0
-5.1 -6.0
See Also
cell
Notes

floor is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 101

C Library - fmod

fmod

Description
Find double modulus

Syntax

#include <math.h>
double fmod(double x, double y)

Function
fmod computes the floating point remainder of x / y, to full double pre-
cision. The return value of f is determined using the formula:

f=x-i*y

wherei issomeinteger, f isthe same sign as x, and the absol ute val ue of
f isless than the absolute value of .

Return Value
fmod returns the value of f expressed as a double floating value. If y is
zero, fmod returns zero.

Example
X y fmod(x, y)
5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0
-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

102 Using The Compiler © 2003 COSMIC Software

CLibrary - free

free

Description
Free space on the heap

Syntax

#include <stdlib.h>
void free(void *ptr)

Function
freereturns an allocated cell to the heap for subsequence reuse. The cell
pointer ptr must have been obtained by an earlier calloc, malloc, or
realloc cal; otherwise the heap will become corrupted. free does its
best to check for invalid values of ptr. A NULL value for ptr is explic-
itly allowed, however, and isignored.

Return Value
Nothing.

Example
To give back an allocated area:

free(pd);

See Also
calloc, malloc, realloc

Notes
No effort is made to lower the system break when storageis freed, so it
is quite possible that earlier activity on the heap may cause problems
later on the stack.

free is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 103

C Library - frexp

frexp

Description
Extract fraction from exponent part

Syntax

#include <math.h>
double frexp(double val, int *exp)

Function
frexp partitions the double at val, which should be non-zero, into afrac-
tionintheinterval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractiona portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val asthe return
value of the function, and writes the exponent at *exp.

Example
To implement the sgrt(x) function:

double sqgrt(double x)
{

extern double newton(double);
int n;

x = frexp(x, &n);
X = newton(x);

if (n&1)
X *= SQRT2;
return (Ildexp(x, n 7/ 2));
3
See Also
Idexp
Notes

frexp is packaged in the floating point library.

104 Using The Compiler © 2003 COSMIC Software

C Library - getchar

getchar

Description
Get character from input stream

Syntax

#include <stdio.h>
int getchar(void)

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or aread error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes
getchar is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 105

C Library - gets
gets

Description
Get atext line from input stream

Syntax

#include <stdio.h>
char *gets(char *s)

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
getsreturns sif successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
See Also
puts

Notes
Thereis no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

106 Using The Compiler © 2003 COSMIC Software

C Library - isalnum

Isalnum

Description
Test for aphabetic or numeric character

Syntax

#include <ctype.h>
int isalnum(int c¢)

Function
isalnum tests whether ¢ is an aphabetic character (either upper or

lower case), or adecimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric

character; otherwise the value returned is zero.

Example
Totest for avalid Cidentifier:

if (isalpha(*s) || *s == "_")
for (++s; isalnum(*s) || *s == "_"; ++s)

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnumis packaged in the integer library.

© 2003 COMIC Software Using The Compiler 107

C Library - isalpha

Isalpha

Description
Test for aphabetic character

Syntax

#include <ctype.h>
int isalpha(int c)

Function
isalpha tests whether c is an aphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an a phabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && lisalpha(*first))

++first;
for (last = first; isalpha(*last); ++last)

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

108 Using The Compiler © 2003 COSMIC Software

C Library - iscntrl

lscntrl

Description
Test for control character

Syntax

#include <ctype.h>
int iscntri(int c)

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-

nary control character (lessthan 040 in ASCII).

Return Value
iscntrl returns nonzero if ¢ is acontrol character; otherwise the valueis

Z€ero.

Example
To map control characters to percent signs:

for (G *s; ++s)
if (iscentrl(*s))
*s = "%T;

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 109

C Library - isdigit
isdigit

Description
Test for digit

Syntax

#include <ctype.h>
int isdigit(int c¢)

Function
isdigit tests whether cisadecimal digit.

Return Value
isdigit returns nonzero if c is a decima digit; otherwise the value
returned is zero.

Example
To convert adecimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - "0°;

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

110 Using The Compiler © 2003 COSMIC Software

C Library - isgraph

Isgraph

Description
Test for graphic character

Syntax

#include <ctype.h>
int isgraph(int c)

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if ¢ is a graphic character. Otherwise the value

returned is zero.

Example
To output only graphic characters:

for (G *s; ++s)

if (isgraph(*s))
putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 111

C Library - islower

ISlower

Description
Test for lower-case character

Syntax

#include <ctype.h>
int islower(int c)

Function
islower tests whether c is alower-case al phabetic character.

Return Value
idower returns nonzero if c is a lower-case character; otherwise the
value returned is zero.

Example
To convert to upper-case:

if (islower(c))

c += "A" - "a"; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

112 Using The Compiler © 2003 COSMIC Software

C Library - isprint

ISprint

Description
Test for printing character

Syntax

#include <ctype.h>
int isprint(int c)

Function
isprint tests whether c is any printing character. Printing characters are
al characters between a space (040 in ASCII) and atilde ‘~' character
(0176 in ASCII).

Return Value
isprint returns nonzero if ¢ is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)

if (isprint(*s))
putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 113

C Library - ispunct
Ispunct

Description
Test for punctuation character

Syntax

#include <ctype.h>
int ispunct(int c¢)

Function
ispunct tests whether c is a punctuation character. Punctuation charac-

tersinclude any printing character except space, a digit, or aletter.

Return Value
ispunct returns nonzero if ¢ is a punctuation character; otherwise the
valuereturned is zero.

Example
To collect all punctuation charactersin a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))
buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

114 Using The Compiler © 2003 COSMIC Software

C Library - isgrt

Isqrt

Description
Integer square root

Syntax

#include <stdlib.h>
unsigned int isgrt(unsigned int i)

Function
isgrt obtainsthe integral square root of the unsignedint i.

Return Value
isgrt returns the closest integer smaller or equal to the square root of i,

expressed as an unsigned int.

Example
To useisgrt to check whether n> 2 isa prime number:

if (I(n & 01))
return (NOTPRIME);
sq = isqrt(n);
for (div = 3; div <= sq; div += 2)
if (I(n % div))
return (NOTPRIME);
return (PRIME);

See Also
Isgrt, sgrt

Notes
isgrt is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 115

C Library - isspace
ISspace

Description
Test for whitespace character

Syntax

#include <ctype.h>
int isspace(int c)

Function
isspace tests whether ¢ is awhitespace character. Whitespace characters
are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v’), form feed
(‘\f"), carriage return (*\r’), and space (*).

Return Value
isspace returns nonzero if ¢ is a whitespace character; otherwise the
valuereturned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++S;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

116 Using The Compiler © 2003 COSMIC Software

C Library - isupper

Isupper

Description
Test for upper-case character

Syntax

/* no header file need be included */
int isupper(int c)

Function
isupper tests whether ¢ is an upper-case a phabetic character.

Return Value
isupper returns nonzero if ¢ is an upper-case character; otherwise the

value returned is zero.

Example
To convert to lower-case:

if (isupper(c))
c += "a" - "A"; /* also see tolower() */

See Also
isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 117

C Library - isxdigit
Isxdigit

Description
Test for hexadecimal digit

Syntax

#include <ctype.h>
int isxdigit(int c)

Function
isxdigit tests whether ¢ is a hexadecima digit, i.e. in the set
[0123456789abcdef ABCDEF].

Return Value
isxdigit returns nonzero if ¢ is a hexadecimal digit; otherwise the value
returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)
sum = sum * 10 + *s - "0";
else
sum = sum * 10 + tolower(*s) + (10 - "a");

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

118 Using The Compiler © 2003 COSMIC Software

C Library - labs

labs

Description
Find long absolute value

Syntax

#include <stdlib.h>
long labs(long 1)

Function
labs obtains the absolute value of |. No check is made to see that the

result can be properly represented.

Return Value
labs returns the absolute value of |, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “7);

See Also
abs, fabs

Notes
labs is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 119

C Library - Idexp
ldexp

Description
Scal e double exponent

Syntax

#include <math.h>
double Idexp(double x, Int exp)

Function
Idexp multiplies the double x by two raised to the integer power exp.

Return Value
Idexp returns the double result x * (1 << exp) expressed as a double

floating value. If arange error occurs, ldexp returns HUGE_VAL.

Example
X exp lIdexp(x, exp)
1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 © 0.0

See Also

frexp, modf
Notes

Idexp is packaged in the floating point library.

120 Using The Compiler © 2003 COSMIC Software

C Library - Idiv

Idiv

Description
Long divide with quotient and remainder

Syntax

#include <stdlib.h>
Idiv_t Idiv(long numer, long denom)

Function
Idiv divides the long integer numer by the long integer denom and

returns the quotient and the remainder in a structure of type Idiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
Idiv returns a structure of type Idiv_t containing both quotient and

remainder.

Example
To get minutes and seconds from adelay in seconds:

Idiv_t result;
result = Idiv(time, 60L);
min = result.quot;
sec = result.rem;

See Also
div

Notes
Idiv is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 121

C Library - log
log

Description
Natural logarithm

Syntax

#include <math.h>
double log(double x)

Function
log computes the natural |ogarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a

double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

122 Using The Compiler © 2003 COSMIC Software

C Library - log10

l0og10

Description
Common logarithm

Syntax

#include <math.h>
double logl0(double x)

Function
log10 computes thecommon log of x to full double precision by com-

puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, arange error will occur.

Return Value
10g10 returns the nearest internal representation to 1og10 x, expressed as

a double floating value. If the input argument is less than or equal to
zero, logl0 returns zero.

Example
To determine the number of digits in x, where x is a positive integer

expressed as a double:
ndig = loglo(x) + 1;

See Also
log

Notes
log10 is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 123

C Library - longjmp

longjmp

Description
Restore calling environment

Syntax

#include <setjmp.h>
void longymp(mp_buf env, int val)

Function
longjmp restores the environment saved in env by setjmp. If env has not

been set by a call to setjmp, or if the caller has returned in the mean-
time, the resulting behavior is unpredictable.

All accessible objects have their values restored when longjmp is
called, except for objects of storage class register, the values of which
have been changed between the setjmp and longjmp calls.

Return Value
When longjmp returns, program execution continues as if the corre-

sponding call to setjmp had returned the value val. longjmp cannot force
setjmp to return the value zero. If val is zero, setjmp returns the value
one.

Example
You can write ageneric error handler as.

void handle(int err)

{
extern jmp_buf env;
longjmp(env, err); /* return from setjmp */
See Also
setjmp
Notes

longjmp is packaged in the integer library.

124 Using The Compiler © 2003 COSMIC Software

C Library - Isgrt

Isgrt

Description
Long integer square root

Syntax

#include <stdlib.h>
unsigned int Isqrt(unsigned long 1)

Function
Isgrt obtainsthe integral square root of the unsigned long 1.

Return Value
Isgrt returns the closest integer smaller or equal to the square root of |,

expressed as an unsigned int.

Example
To use Isgrt to check whether n > 2 isa prime number:

if (I(n & 01))
return (NOTPRIME);
sq = Isqrt(n);
for (div = 3; div <= sq; div += 2)
if (I(n % div))
return (NOTPRIME);
return (PRIME);

See Also
isgrt, sgrt

Notes
Isgrt is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 125

C Library - malloc

malloc

Description
Allocate space on the heap

Syntax

#include <stdlib.h>
void *malloc(unsigned int nbytes)

Function
malloc allocates space on the heap for an item of size nbytes. The space

alocated is guaranteed to be at least nbytes long, starting from the
pointer returned, which is guaranteed to be on a proper storage bound-
ary for an object of any type. The heap is grown as necessary. If spaceis
exhausted, malloc returns anull pointer.

Return Value
malloc returns a pointer to the start of the allocated cell if successful;

otherwise it returns NULL. The pointer returned may be assigned to an
object of any type without casting.

Example
To allocate an array of ten doubles:

double *pd;
pd = malloc(10 * sizeof *pd);

See Also
calloc, free, realloc

Notes
malloc is packaged in the integer library.

126 Using The Compiler © 2003 COSMIC Software

C Library - max

max

Description
Test for maximum

Syntax

#include <stdlib.h>
max(a,b)

Function
max obtains the maximum of its two arguments, a and b. Since max is

implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a< b) ? b : a), suitably paren-

thesized.

Example
To set anew maximum level:

hiwater = max(hiwater, level);
See Also
min

Notes
max is an extension to the proposed ANSI C standard.

max isamacro declared in the <stdlib.h> header file. You can useit by
including <stdlib.n> with your program. Because it is a macro, max
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated other than once.

© 2003 COMIC Software Using The Compiler 127

C Library - memchr

memchr

Description
Scan buffer for character

Syntax

#include <string.h>
void *memchr(void *s, int c, unsigned int n)

Function
memchr looks for the first occurrence of a specific character cinann

character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches ¢, or NULL

if no character matches.

Example
To map keybuf[] charactersinto subst[] characters:

if ((t = memchr(keybuf, *s, KEYS1Z)) I= NULL)
*s = subst[t - keybuf];

See Also
strchr, strespn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

128 Using The Compiler © 2003 COSMIC Software

C Library - memcmp

memcmp

Description
Compare two buffers for lexical order
Syntax
#include <string.h>
int memcmp(void *sl1l, void *s2, unsigned int n)
Function

memcmp compares two text buffers, character by character, for lexical
order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,

according to whether sl is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, "include", 7) == 0)
doinclude(Q);

See Also
stremp, strncmp

Notes
memcmp is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 129

C Library - memcpy

memcpy

Description
Copy one buffer to another

Syntax

#include <string.h>
void *memcpy(void *s1, void *s2, unsigned int n)

Function
memcpy copies the first n characters starting at location s2 into the

buffer beginning at s1.

Return Value
memcpy returns sl.

Example
To place “first string, second string” in buff]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, ", second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is packaged in the integer library.

130 Using The Compiler © 2003 COSMIC Software

C Library - memmove

memimove

Description
Copy one buffer to another

Syntax

#include <string.h>
void *memmove(void *s1, void *s2, unsigned int n)

Function
memmove copies the first n characters starting at location s2 into the

buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns si.

Example
To shift an array of characters:

memmove (buf, &buf[5], 10);

See Also

memcpy

Notes
memmove is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 131

C Library - memset

memset

Description
Propagate fill character throughout buffer

Syntax

#include <string.h>
void *memset(void *s, int c, unsigned int n)

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULSs:

memset(buf, "\0", BUFSI1Z);

Notes
memset is packaged in the integer library.

132 Using The Compiler © 2003 COSMIC Software

C Library - min

min

Description
Test for minimum

Syntax

#include <stdlib.h>
min(a,b)

Function
min obtains the minimum of its two arguments, a and b. Since min is

implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a: b), suitably paren-

thesized.

Example
To set anew minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is amacro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, min
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated more than once.

© 2003 COMIC Software Using The Compiler 133

C Library - modf

modf

Description
Extract fraction and integer from double

Syntax

#include <math.h>
double modf(double val, double *pd)

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at * pd.

Example
val *pd modf(val, *pd)

See Also
frexp, dexp

Notes
modf is packaged in the floating point library.

134 Using The Compiler © 2003 COSMIC Software

C Library - pow

pow

Description
Raise x to the y power

Syntax

#include <math.h>
double pow(double x, double y)

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-

blefloating value. If x is zero and y isless than or equal to zero, or if xis
negative and y is not an integer, pow returns zero.

Example
X y pow(x, y)
2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 0
-1.0 2.0 1.0
-1.0 2.1 0
See Also
exp
Notes

pow is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 135

C Library - printf
printf

Description
Output formatted arguments to stdout

Syntax

#include <stdio.h>
int printf(char *fmt,...)

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers

The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%', the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - adecima number which optionally specifies amini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding iswith spaces unlessthe
field width digit string starts with zero, in which case the padding is
with zeros.

136 Using The Compiler © 2003 COSMIC Software

C Library - printf

<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, 0, u, X, and X conversions, the
number of digitsto appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by adecimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, 0, u, X, or X conversion
character appliesto ashort int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, itisignored.

| - optionally specifies that the d, i, o0, u, X, and X conversion character
appliesto along int or unsigned long int argument. It specifiesalong or
far pointer argument if used with the p conversion character. If the |
appears with any other conversion character, it isignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to along double argument. If the L appears with any
other conversion character, it isignored.

<conver sion character > - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’
instead of a digit string. In this case, an int argument supplies the field
width or precision. The arguments supplying field width must appear
before the optional argument to be converted. A negative field width
argument istaken as a - flag followed by a positive field width. A nega-
tive precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

Space - aspace will be prepended if the first character of a signed con-
version is not asign. This flag will be ignored if space and + flags are
both specified.

© 2003 COMIC Software Using The Compiler 137

C Library - printf

- result isto be converted to an “alternate form”. For ¢, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.
- - result of conversion will be |eft justified within the field.

The <conversion character> is one of the following:

% -a‘%’ isprinted. No argument is converted.

C - the least significant byte of the int argument is converted to a char-
acter and printed.

d, i, 0, u, X, X - theint argument is converted to signed decimal (d or
i), unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.

f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is

138 Using The Compiler © 2003 COSMIC Software

C Library - printf

equal to the precision specification. If the precision is missing, it is
taken as 6. If the precision is explicitly zero, no decimal point appears.
If adecimal point appears, at least one digit appears beforeit.

0, G - the double argument is printed in stylef or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
ewill beused only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; adecimal point appears only if it is followed by a digit.

N - the argument is taken to be an int * pointer to an integer into which
iswritten the number of characterswritten to the output stream so far by
thiscall to printf. No argument is converted.

P - the argument is taken to be avoid * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

S - the argument is taken to be a char * pointer to a string. Characters
from the string are written up to, but not including, the terminating
NUL, or until the number of characters indicated by the precision are
written. If the precision is missing, it is taken to be arbitrarily large, so
all characters before the first NUL are printed.

If the character after ‘%’ is not avalid conversion character, the behav-
ior isundefined.

If any argument is or pointsto an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of afield;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.

Return Value

printf returns the number of characters transmitted, or a negative
number if awrite error occurs.

© 2003 COMIC Software Using The Compiler 139

C Library - printf

Notes
A cal with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is a double with the value 5100.53:

printf(“%8.2f\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiersareinvalid: e, E, f, gand G. The L modifier isalso invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
isignored and no special message is generated.

140 Using The Compiler © 2003 COSMIC Software

C Library - putchar

putchar

Description
Put a character to output stream

Syntax

#include <stdio.h>
int putchar(c)

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If awrite error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes
putchar is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 141

C Library - puts
puts

Description
Put atext line to output stream

Syntax

#include <stdio.h>
int puts(char *s)

Function
puts copies characters from the buffer starting at s to the output stream

and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if awrite error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))

See Also
gets

Notes
putsis packaged in the integer library.

142 Using The Compiler © 2003 COSMIC Software

C Library - rand

rand

Description
Generate pseudo-random number

Syntax

#include <stdlib.h>
int rand(void)

Function
rand computes successive pseudo-random integers in the range

[0, 32767], using alinear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice(Q)

{
return (randQ) % 6 + 1);

}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 143

C Library - realloc

realloc

Description
Reallocate space on the heap

Syntax

#include <stdlib.h>
void *realloc(void *ptr, unsigned int nbytes)

Function
realloc grows or shrinks the size of the cell pointed to by ptr to the size

specified by nbytes. The contents of the cell will be unchanged up to the
lesser of the new and old sizes. The cell pointer ptr must have been
obtained by an earlier calloc, malloc, or realloc cal; otherwise the heap
will become corrupted.

Return Value
realloc returns a pointer to the start of the possibly moved cell if suc-

cessful. Otherwise realloc returns NULL and the cell and ptr are
unchanged. The pointer returned may be assigned to an object of any
type without casting.

Example
To adjust p to be n doublesin size:

p = realloc(p, n * sizeof(double));

See Also
calloc, free, malloc

Notes
realloc is packaged in the integer library.

144 Using The Compiler © 2003 COSMIC Software

C Library - shreak

sbreak

Description
Allocate new memory

Syntax

/* no header file need be included */
void *sbreak(unsigned Int size)

Function
sbreak modifies the program memory allocation as necessary, to make

available at least size contiguous bytes of new memory, on a storage
boundary adequate for representing any type of data. There is no guar-
antee that successive calls to sbreak will deliver contiguous areas of
memory.

Return Value
sbreak returns a pointer to the start of the new memory if successful;

otherwise the value returned is NULL.

Example
To buy space for an array of symbols:

if (M(p = sbreak(nsyms * sizeof (symbol))))
remark(““not enough memory!”, NULL);

Notes
shreak is packaged in the integer library.

shreak is an extension to the ANSI C standard.

© 2003 COMIC Software Using The Compiler 145

C Library - scanf

scanf

Description
Read formatted input

Syntax

#include <stdio.h>
int scanf(char *fmt,...)

Function
scanf reads formatted input from the output stream using the format
string at fmt and the arguments specified by ..., as described below.

scanf uses getchar to read each character.

The behavior isunpredictable if there are insufficient argument pointers
for the format. If the format string is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored.

Format Specifiers
The format string may contain:

e any number of spaces, horizontal tabs, and newline characters
which cause input to be read up to the next non-whitespace char-
acter, and

o ordinary characters other than ‘%’ which must match the next
character of the input stream.

Each <conversion specification>, the definition of which follows, con-
sists of the character ‘%, an optional assignment-suppressing character
“*' an optional maximum field width, an optional h, | or L indicating
the size of the receiving object, and a <conversion character>,
described below.

A conversion specification directs the conversion of the next input

field. The result is placed in the object pointed to by the subsequent
argument, unless assignment suppression was indicated by a ‘*’. An

146 Using The Compiler © 2003 COSMIC Software

C Library - scanf

input field isastring of non-space characters; it extends to the next con-
flicting character or until the field width, if specified, is exhausted.

The conversion specification indicates the interpretation of the input
field; the corresponding pointer argument must be arestricted type. The
<conversion character> isone of the following:

% - asingle % is expected in the input at this point; no assignment
OCCurs.

If the character after ‘%’ is not avalid conversion character, the behav-
ior is undefined.

C - a character is expected; the subsequent argument must be of type
pointer to char. The normal behavior (skip over space characters) is
suppressed in this case; to read the next non-space character, use % 1s.
If afield width is specified, the corresponding argument must refer to a
character array; the indicated number of charactersisread.

d - adecimal integer is expected; the subsequent argument must be a
pointer to integer.

e f, g- afloat is expected; the subsequent argument must be a pointer
to float. The input format for floating point numbers is an optionally
signed sequence of digits, possibly containing adecimal point, followed
by an optional exponent field consisting of an E or e, followed by an
optionally signed integer.

| - an integer is expected; the subsequent argument must be a pointer to
integer. If the input field begins with the characters Ox or 0X, thefield is
taken as a hexadecimal integer. If the input field begins with the charac-
ter O, the field is taken as an octal integer. Otherwise, the input field is
taken as adecimal integer.

N - no input is consumed; the subsequent argument must be an int *
pointer to an integer into which iswritten the number of characters read
from the input stream so far by this call to scanf.

0 - an octa integer is expected; the subsequent argument must be a
pointer to integer.

© 2003 COMIC Software Using The Compiler 147

C Library - scanf

p - apointer is expected; the subsequent argument must be a void *
pointer. The format of the input field should be the same as that pro-
duced by the % p conversion of printf. On any input other than a value
printed earlier during the same program execution, the behavior of the
% p conversion is undefined.

S - a character string is expected; the subsequent argument must be a
char * pointer to an array large enough to hold the string and a terminat-
ing NUL, which will be added automatically. The input field is termi-
nated by a space, a horizontal tab, or a newline, which is not part of the
field.

U - an unsigned decimal integer is expected; the subsequent argument
must be a pointer to integer.

X - ahexadecimal integer is expected; a subsegquent argument must be a
pointer to integer.

[- astring that is not to be delimited by spaces is expected; the subse-
quent argument must be a char * just as for %s. The left bracket isfol-
lowed by a set of characters and aright bracket; the characters between
the brackets define a set of characters making up the string. If the first
character is not a circumflex ‘', the input field consists of al charac-
tersup to the first character that is not in the set between the brackets; if
the first character after the left bracket is a circumflex, the input field
consists of all characters up to the first character that isin the set of the
remaining characters between the brackets. A NUL character will be
appended to the input.

The conversion characters d, i, 0, u and x may be preceded by | to indi-
cate that the subsequent argument is a pointer to long int rather than a
pointer to int, or by h to indicate that it is a pointer to short int. Simi-
larly, the conversion characters e and f may be preceded by | to indicate
that the subseguent argument is a pointer to double rather than a pointer
tofloat, or by L to indicate a pointer to long double.

The conversion characters e, g or x may be capitalized. However, the
use of upper case has no effect on the conversion process and both
upper and lower case input is accepted.

148 Using The Compiler © 2003 COSMIC Software

C Library - scanf

If conversion terminates on a conflicting input character, that character
is left unread in the input stream. Trailing white space (including a
newline) isleft unread unless matched in the control string. The success
of literal matches and suppressed assignments is not directly determina-
ble other than viathe % n conversion.

Return Value
scanf returns the number of assigned input items, which can be zero if

there is an early conflict between an input character and the format, or
EOF if end of fileis encountered before the first conflict or conversion.

Example
To be certain of a dubious request:

printf(“are you sure?”);
if (scanf(“%c”, &ans) && (ans == "Y* || ans == "y"))
scrogQ;

See Also
sscanf

Notes
scanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of scanf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot read or manipulate floating point humbers. If your pro-
grams call the integer only version of scanf, the following conversion
specifiersareinvalid: e, f,gand p. The L flagisaso invalid.

If aninvalid conversion specifier is encountered, it isignored.

© 2003 COMIC Software Using The Compiler 149

C Library - setjmp

setjmp

Description
Save calling environment

Syntax

#include <setjmp.h>
int setjmp(mp_buf env)

Function

setjmp saves the calling environment in env for later use by the

longjmp function.

Since setjmp manipulates the stack, it should never be used except as

the single operand in a switch statement.

Return Value

setjmp returns zero on its initial cal, or the argument to alongjmp call

that uses the same env.

Example

To call any event until it returns O or 1 and calls longjmp, which will
then start execution at the function eventO or event1:

static jmp_buf ev[2];

switch (setjmp(ev[0]))

case O: /* registered */
break;

default: /* event 0 occurred */
event0();
next(Q);
3

switch (setjmp(ev[1]D)

case O: /* registered */
break;

defaul t: /* event 1 occurred */
eventl();
next();

150 Using The Compiler

© 2003 COSMIC Software

C Library - setjmp

¥
next();
next()
{
int i;
for G)
{
i = anyevent();
if@G=01]11i1==1)
longjmp(evlil);
3
3
See Also
longjmp
Notes

setjmp is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 151

CLibrary - sin

sin

Description
Sin

Syntax

#include <math.h>
double sin(double x)

Function
sin computes the sine of X, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of sinisO.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);
See Also
cos, tan
Notes

sin is packaged in the floating point library.

152 Using The Compiler © 2003 COSMIC Software

C Library - sinh

sinh

Description
Hyperbolic sine

Syntax

#include <math.h>
double sinh(double x)

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a

double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.1y = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 153

C Library - sprintf
sprintf

Description
Output arguments formatted to buffer

Syntax

#include <stdio.h>
int sprintf(char *s, char fmt,...)

Function
sprintf writes formatted to the buffer pointed at by s using the format

string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-

minating NUL character.

Example
To format adouble at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point

library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiersareinvalid: e, E, f, gand G. The L flagisaso invalid.

154 Using The Compiler © 2003 COSMIC Software

C Library - sgrt

sgrt

Description
Real square root

Syntax

#include <math.h>
double sqgrt(double x)

Function
sqrt computes the sguare root of x to full double precision.

Return Value
sgrt returns the nearest internal representation to sgrt(x), expressed as a
double floating value. If x is negative, sgrt returns zero.

Example
To use sgrt to check whether n > 2 isa prime number:

if (1(n & 01))
return (NOTPRIME);
sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)
if (I(n % div))
return (NOTPRIME);
return (PRIME);

See Also
isgrt, Isgrt

Notes
sgrt is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 155

C Library - srand

srand

Description
Seed pseudo-random number generator

Syntax

#include <stdlib.h>
void srand(unsigned char nseed)

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. Theinitial seed value used by rand and srand is 0.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also

rand

Notes
srand is packaged in the integer library.

156 Using The Compiler © 2003 COSMIC Software

C Library - sscanf

sscanf

Description
Read formatted input from a string

Syntax

#include <stdio.h>
int sscanf(schar *, char *fmt,...)

Function
sscanf reads formatted input from the NUL -terminated string pointed at

by s using the format string at fmt and the arguments specified by ..., in
exactly the same way as scanf. See the description of the scanf function
for information on the format conversion specifiers.

Return Value
sscanf returns the number of assigned input items, which can be zero if

there is an early conflict between an input character and the format, or
EOF if the end of the string is encountered before the first conflict or
conversion.

See Also
scanf

Notes
sscanf is packaged in both the integer library and the floating point

library. The functionality of the integer only version of sscanf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sscanf, the following conversion
specifiersareinvalid: e, f,gand p. TheL flagisalsoinvalid.

© 2003 COMIC Software Using The Compiler 157

C Library - strcat

Strcat

Description
Concatenate strings

Syntax

#include <string.h>
char *strcat(char *sl1l, char *s2)

Function
strcat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to sl.

Return Value
strcat returns sl.

Example
To place the strings “first string, second string” in buf[]:

buf[0] = "\0";

strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

158 Using The Compiler © 2003 COSMIC Software

C Library - strchr

strchr

Description
Scan string for first occurrence of character

Syntax

#include <string.h>
char *strchr(char *s, iInt c)

Function
strchr looks for the first occurrence of a specific character cin a NUL

terminated target string s.

Return Value
strchr returns a pointer to the first character that matches ¢, or NULL if

none does.

Example
Tomap keystr[] charactersinto subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 159

C Library - strcmp

strcmp

Description
Compare two strings for lexical order

Syntax

#include <string.h>
int strcmp(char *sl1, char *s2)

Function
stremp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,
according to whether sl is lexicographically greater than, equal to, or
less than 2.

Example
To look for the string “include”:

if (strcmp(buf, “include™) == 0)
doinclude(Q);

See Also
memcmp, strncmp

Notes
strcmp is packaged in the integer library.

160 Using The Compiler © 2003 COSMIC Software

C Library - strcpy

strcpy

Description
Copy one string to another

Syntax

#include <string.h>
char *strcpy(char *sl1l, char *s2)

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at

by s1. The terminating NUL is also copied.

Return Value
strepy returns sl.

Example
To make a copy of the string s2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strepy is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 161

C Library - strcspn
strcspn

Description
Find the end of a span of charactersin a set

Syntax

#include <string.h>
unsigned int strcspn(char *sl1l, char *s2)

Function
strespn scans the string starting at s1 for the first occurrence of a char-
acter in the string starting at s2. It computes a subscript i such that:

» sl[i] isacharacter in the string starting at s1

» sl[i] compares equa to some character in the string starting at s2,
which may beits terminating null character.

Return Value
strespn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if none of the charactersin sl arein s2.

Example
To find the start of adecimal constant in atext string:

if (Istr[i = strcspn(str, “0123456789+-")])
printf(“can®"t find number\n’);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strespn is packaged in the integer library.

162 Using The Compiler © 2003 COSMIC Software

C Library - strlen

strien

Description
Find length of a string

Syntax

#include <string.h>
unsigned int strlen(char *s)

Function
strlen scansthe text string starting at s to determine the number of char-

acters before the terminating NUL .

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 163

C Library - strncat

Strncat

Description
Concatenate strings of length n

Syntax

#include <string.h>
char *strncat(char *sl1l, char *s2, unsigned int n)

Function
strncat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of sl. n specifies the maximum number of charactersto
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to sl.

Return Value
strncat returns sl.

Example
To concatenate the strings “day” and “light”:

strepy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

164 Using The Compiler © 2003 COSMIC Software

C Library - strncmp

strncmp

Description
Compare two n length strings for lexical order

Syntax

#include <string.h>
int strncmp(char *s1, char *s2, unsigned int n)

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at sl, the
second at s2. n specifies the maximum number of characters to be com-
pared, unless the terminating NUL in sl or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether sl is lexicographically greater than, equal to, or
less than s2.

Example
To check for a particular error message:

if (strncmp(errmsg,

“can"t write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 165

C Library - strncpy
strncpy

Description
Copy n length string

Syntax

#include <string.h>
char *strncpy(char *sl1l, char *s2, unsigned int n)

Function
strnepy copies the first n characters starting at location s2 into the
buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy atotal of n
characters.

Return Value
strncpy returns sl.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string S2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

166 Using The Compiler © 2003 COSMIC Software

C Library - strpbrk

strpbrk

Description
Find occurrence in string of character in set

Syntax

#include <string.h>
char *strpbrk(char *sl1, char *s2)

Function
strpbrk scans the NUL terminated string starting at sl for the first

occurrence of a character in the NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in sl that is aso contained

inthe set s2, or aNULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “<{|}-"))
*string = "@";

See Also
memchr, strchr, strespn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 167

C Library - strrchr
strrchr

Description
Scan string for last occurrence of character

Syntax

#include <string.h>
char *strrchr(char *s,int c)

Function
strrchr looks for the last occurrence of a specific character cin a NUL
terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches ¢, or NULL if
none does.

Example
To find afilename within a directory pathname:

if (s = strrchr(*“/usr/lib/libc.user”, */*%)
++S;

See Also
memchr, strchr, strpbrk, strcspn, strspn

Notes
strrchr is packaged in the integer library.

168 Using The Compiler © 2003 COSMIC Software

C Library - strspn

strspn

Description
Find the end of a span of characters not in set

Syntax

#include <string.h>
unsigned int strspn(char *sl1, char *s2)

Function
strspn scans the string starting at sl for the first occurrence of acharac-
ter not in the string starting at s2. It computes a subscript i such that

o sl[i] isacharacter in the string starting at s1

e sl[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-

nating null character if al of the charactersin sl arein s2.

Example
To check astring for characters other than decimal digits:

if (str[strspn(str, “0123456789”)])
printf(“invalid number\n”);

See Also
memchr, strespn, strehr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 169

C Library - strstr
Strstr

Description
Scan string for first occurrence of string

Syntax

#include <string.h>
char *strstr(char *sl1l, char *s2)

Function
strstr looks for the first occurrence of a specific string s2 not including
itsterminating NUL, in aNUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches ¢, or NULL if
none does.

Example
To look for akeyword in astring:

if (t = strstr(buf, “LIST”))
do_list(t);

See Also
memchr, strespn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

170 Using The Compiler © 2003 COSMIC Software

C Library - strtod

strtod

Description
Convert buffer to double

Syntax

#include <stdlib.h>
double strtod(char *nptr, char **endptr)

Function
strtod converts the string at nptr into a double. The string is taken as

the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+[-]d*[.d*][e[+]-]dd*]

whered isany decimal digit and eisthe character ‘€' or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against over-
flow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-

able characters, it returns zero.

Example
To read a string from STDIN and convert it to adouble at d:

gets(buf);
d = strtod(buf, NULL);

See Also

atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 171

C Library - strtol
strtol

Description
Convert buffer to long

Syntax

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base)

Function

strtol converts the string at nptr into along integer. Leading whitespace
is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If base is not zero, characters a-z or A-Z
represents digits in range 10-36. If base is zero, aleading “Ox” or “0X”
in the string indicates hexadecimal, aleading “0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “0Ox” or “OX” is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read astring from STDIN and convert it toalong |:

gets(buf);
1 = strtol (buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

172 Using The Compiler © 2003 COSMIC Software

C Library - strtoul

strtoul

Description
Convert buffer to unsigned long

Syntax

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,
int base)

Function

strtoul converts the string at nptr into a long integer. Leading
whitespace is skipped and an optional sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
ters a-z or A-Z represents digits in range 10-36. If base is zero, a lead-
ing “Ox” or “0OX” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If baseis 16 and aleading “0x” or “0X” is present, it is skipped before
to convert. If endptr isnot anull pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-
ble characters, zero isreturned.

Example
To read a string from STDIN and convert ittoalongl:

gets(buf);
1 = strtoul (buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is amacro redefined to strtol.

© 2003 COMIC Software Using The Compiler 173

II%!I C Library - tan

tan

Description
Tangent

Syntax

#include <math.h>
double tan(double Xx)

Function
tan computes the tangent of X, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with alarge
size may return a meaningless value, i.e. when x / (2 * pi) has no frac-
tion bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also

cos, sin

Notes
tan is packaged in the floating point library.

174 Using The Compiler © 2003 COSMIC Software

C Library - tanh

tanh

Description
Hyperbolic tangent

Syntax

#include <math.h>
double tanh(double Xx)

Function
tanh computes the value of the hyperbolic tangent of x to double preci-

sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as

a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(X);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 175

II%!I C Library - tolower

tolower

Description
Convert character to lower-case if necessary

Syntax

#include <ctype.h>
int tolower(int c)

Function
tolower converts an upper-case letter to its lower-case equivalent, leav-
ing al other characters unmodified.

Return Value
tolower returns the corresponding lower-case letter, or the unchanged
character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)
sum = sum * 16 + *s - "0";
else
sum = sum * 16 + tolower(*s) + (10 - "a");

See Also
toupper

Notes
tolower is packaged in the integer library.

176 Using The Compiler © 2003 COSMIC Software

C Library - toupper

toupper

Description
Convert character to upper-case if necessary

Syntax

#include <ctype.h>
int toupper(int c)

Function
toupper converts alower-case letter to its upper-case equivalent, leav-

ing al other characters unmodified.

Return Value
toupper returns the corresponding upper-case letter, or the unchanged

character.

Example
To convert a character string to upper-case | etters:

for (i = 0; 1 < size; ++i)
buf[i] = toupper(buf[i]);

See Also

tolower

Notes
toupper is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 177

CLibrary - va_arg

va arg

Description
Get pointer to next argument in list

Syntax

#include <stdarg.h>
type va_arg(va_list ap, type)

Function
The macro va_arg is an rvalue that computes the value of the next
argument in a variable length argument list. Information on the argu-
ment list is stored in the array data object ap. You must first initialize ap
with the macro va_start, and compute all earlier argumentsin thelist by
expanding va_arg for each argument.

The type of the next argument is given by the type name type. The type
name must be the same as the type of the next argument. Remember
that the compiler widens an arithmetic argument to int, and converts an
argument of type float to double. You write the type after conversion.
Writeint instead of char and double instead of float.

Do not write atype name that contains any parentheses. Use atype def-
inition, if necessary, asin:

typedef int (*pfi)(Q);
/* pointer to function returning int */

fun_ptr = va_arg(ap, pfi);
/* get function pointer argument */

Return Value
va_arg expands to an rvalue of type type. Its value is the value of the
next argument. It aters the information stored in ap so that the next
expansion of va_arg accesses the argument following.

Example
To write multiple strings to afile:

178 Using The Compiler © 2003 COSMIC Software

C Library - va_arg

#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();
strput(pf, “This is one string\n”, \
“and this is another...\n”, (char *)0);
3

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;

{

char ptr;

va_list va;

if (Iptr)
return;
else

{

puts(ptr);

va_start(va, ptr);

while (ptr = va_arg(va, char *)
puts(ptr);

va_end(va);

}

See Also
va_end, va_start

Notes
va_arg isamacro declared in the <stdarg.h> header file. You can use it
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.

© 2003 COMIC Software Using The Compiler 179

II%!I C Library - va_end

va end

Description
Stop accessing values in an argument list

Syntax

#include <stdarg.h>
void va_end(va_list ap)

Function
va_end is a macro which you must expand if you expand the macro
va_start within a function that contains a variable length argument list.
Information on the argument list is stored in the data object designated
by ap. Designate the same data object in both va_start and va_end.

You expand va_end after you have accessed all argument values with
the macro va_arg, before your program returns from the function that
contains the variable length argument list. After you expand va_end, do
not expand va_arg with the same ap. You need not expand va_arg
within the function that contains the variable length argument list.

You must write an expansion of va_end as an expression statement con-
taining a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_end expands to a statement, not an expression.

Example
To write multiple stringsto afile:

#include <stdio.h>
#include <stdarg.h>

main(Q)
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);

}

180 Using The Compiler © 2003 COSMIC Software

C Library - va_end

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;

{

char ptr;

va_list va;

it (Iptr)
return;
else

{

puts(ptr);

va_start(va, ptr);

while (ptr = va_arg(va, char *)
puts(ptr);

va_end(va);

}

See Also
va_arg, va_start

Notes
va_end isamacro declared in the <stdarg.h> header file. You can useit
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.

© 2003 COMIC Software Using The Compiler 181

II%!I C Library - va_start

va_ start

Description
Start accessing valuesin an argument list

Syntax

#include <stdarg.h>
void va_start(va_list ap, parmN)

Function
va_ start is a macro which you must expand before you expand the
macro va_arg. It initializes the information stored in the data object
designated by ap. The argument parmN must be the identifier you
declare as the name of the last specified argument in the variable length
argument list for the function. In the function prototype for the function,
parmN is the argument name you write just before the ,...

The type of parmN must be one of the types assumed by an argument
passed in the absence of a prototype. Its type must not be float or char.
Also, parmN cannot have storage class register.

If you expand va_start, you must expand the macro va_end before your
program returns from the function containing the variable length argu-
ment list.

You must write an expansion of va_start as an expression statement
containing afunction call. The call must be followed by a semicolon.

Return Value
Nothing. va_start expands to a statement, not an expression.

Example
To write multiple strings to afile:

#include <stdio.h>
#include <stdarg.h>

main()

{

182 Using The Compiler © 2003 COSMIC Software

C Library - va_start

va_start

void strput();
strput(pf, “This is one string\n”, \
“and this is another...\n”, (char *)0);

}

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;

{

char ptr;

va_list va;

it (Iptr)
return;
else

{

puts(ptr);

va_start(va, ptr);

while (ptr = va_arg(va, char *)
puts(ptr);

va_end(va);

}

See Also
va_arg, va_end

Notes
va_start is amacro declared in the <stdarg.h> header file. You can use

it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.

© 2003 COMIC Software Using The Compiler 183

C Library - vprintf
vprintf

Description
Output arguments formatted to stdout

Syntax

#include <stdio.h>
#include <stdarg.-h>
int vprintf(char *s, char fmt, va_list ap)

Function
vprintf writes formatted to the output stream using the format string at
fmt and the arguments specified by pointer ap, in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. The va_start macro must be executed
before to call the vprintf function.

vprintf uses putchar to output each character.

Return Value
vprintf returns the numbers of characters transmitted.

Example
To format adouble at d into buf:

va_start(aptr, fmt);
vprintf(fmt, aptr);

See Also
printf, vsprintf

Notes
vprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vprintf, the following conversion specifiers are
invalid: e, E, f,gand G. TheL flagisalsoinvalid.

184 Using The Compiler © 2003 COSMIC Software

C Library - vsprintf

vsprintf

Description
Output arguments formatted to buffer

Syntax

#include <stdio.h>
#include <stdarg.h>
int vsprintf(char *s, char fmt, va_list ap)

Function
vsprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by pointer ap, in exactly the
same way as printf. See the description of the printf function for infor-
mation on the format conversion specifiers. A NUL character is written
after the last character in the buffer. The va_start macro must be exe-
cuted before to call the vsprintf function.

Return Value
vsprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format adouble at d into buf:

va_start(aptr, fmt);
vsprintf(buf, fmt, aptr);

See Also
printf, vprintf

Notes
vsprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vsprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vsprintf, the following conversion specifiers are
invalid: ¢ E, f,gand G. The L flagisasoinvalid.

© 2003 COMIC Software Using The Compiler 185

CHAPTER

5

Using The Assembler

The ca6811 cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler cals ca6811 to
assemble your code automatically, unless specified otherwise. ca6811
generates also listings if requested. This chapter includes the following
sections:

* Invoking ca6811

* Object File

e Listings

» Assembly Language Syntax
» Branch Optimization

« Old Syntax

e C StyleDirectives

e Directives

© 2003 COSMIC Software Using The Assembler 187

Invoking ca6811

Invoking ca6811

cab811 accepts the following command line options, each of which is
described in detail below:

ca6811 [options] <files>
-a absolute assembler
-b do not optimizes branches
-C output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# Till byte value
-h* include header
-1*> include path
-1 output a listing
+1* listing file name
-m accept old syntax
-mi accept label syntax
-0* output file name
-pe all equates public
-pl keep local symbol
-p all symbols public
-u undefined in listing
-V be verbose
-X include line debug info
-Xp no path in debug info
-xx include full debug info

-a map all sectionsto absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement istoo large. This opti-
mization aso applies to jump and jump to subroutines
instructions.

-C produce cross-reference information. The cross-reference
information will be added at the end of thelisting file. This
option enforces the - option.

188 Using The Assembler © 2003 COSMIC Software

Invoking ca6811

-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of dis-
playing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output atitle in listing (date, file name, page). By defaullt,
no titleis output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default isO.

-h* include the file specified by * before starting assembly. It
is equivalent to an include directive in each sourcefile.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is adirectory name and is not
ended by any directory separator character.

| create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the *.Is
extension, unless the +I option has been specified.

+|* create a listing file in the text file *. If both -| and +| are
specified, the listing file name is given by the +| option.

-m accept the old Motorola syntax.
-mi accept label that is not ended witha“:’ character.
-0* write object code to the file *. If no file name is specified,

the output file name is derived from the input file name, by
replacing the rightmost extension in the input file name
with the character ‘0. For example, if the input file name
isprog.s, the default output file nameis prog.o.

© 2003 COMIC Software Using The Assembler 189

-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef direc-
tive for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-P mark al defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-U produce an error message in the listing file for all occur-
rence of an undefined symbol. This option enforces the -I
option.

-V display the name of each file which is processed.

-X add line debug information to the object file.

-Xp do not prefix filenames in the debug information with any

absolute path name. Debuggers will have to be informed
about the actual fileslocation.

-XX add debug information in the object file for any label
defining code or data. This option disables the -p option as
only public or used labels are selected.

Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, ca6811 generates an object file. If requested by the -
| or -c options, ca6811 generates alisting file even if errors are detected.
Such lines are followed by an error message in the listing.

Object File

The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.

190 Using The Assembler © 2003 COSMIC Software

Listings

Listings

The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source line>

where <address> is the hexadecima relocatable address where the
<source_line> has been assembled, <generated _code> is the hexadec-
imal representation of the object code generated by the assembler and
<source line> is the origina source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Severa directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.

A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.

© 2003 COMIC Software Using The Assembler 191

Assembly Language Syntax

Assembly Language Syntax

The assembler ca6811 conforms to the Motorola syntax as described in
the document Assembly Language Input Sandard. The assembly lan-
guage consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or
; comment

where ‘:" indicates the end of alabel and *;’ defines the start of a com-
ment. The end of aline terminates a comment. The command field may
be aninstruction, adirective or amacro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-

guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
cab811 recognizes the following instructions:

aba bge cba dey Islb rol suba
abx bgt <clc eora Isld rola subb
aby bhi cli eorb Isr rolb subd
adca bhs clr fdiv Isra ror swi
adcb bita clra idiv Isrb rora tab
adda bitb clrb 1inc Isrd rorb tap
addb ble clv inca mul rti tba
addd blo cmpa 1incb neg rts test
anda bls cmpb iIns nega sba tpa
andb blt com inx negb sbca tst
asl bmi coma iny nop sbcb tsta
asla bne comb jmp oraa sec tstb
aslb bpl cpd jsr orab sei tsx
asld bra cpx ldaa psha sev tsy
asr brclr cpy lIdab pshb staa txs
asra brn daa 1dd pshx stab tys
asrb brset dec Ids pshy std wai
bcc bset deca Idx pula stop xgdx
bclr bsr decb Idy pulb sts xgdy

192 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

bcs bvc des Isl pulx stx
beq bvs dex Isla puly sty

The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following example demonstrates

the accepted syntax:
tpa ; implicit
ldaa #1 ; immediate
anda var ; direct or extended
addd ,x ; indexed
orab 0,x ; indexed
bne loop ; relative
bset var,2 ; bit number

brset var,2,loop ; bit test and branch

The assembler chooses the smallest addressing mode where several
solutions are possible. Direct addressing mode is selected when using a
label defined in the .bsct section.

For an exact description of the above instructions, refer to the
Motorola's M68HC11 Reference Manual.

Labels

A source line may begin with alabel. Some directives require alabel on
the same line, otherwise thisfield is optional. A label must begins with
an alphabetic character, the underscore character * * or the period char-
acter ‘.. It is continued by alphabetic (A-Z or a2z) or numeric (0-9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names‘a’, ‘b’, ‘x’ and 'y’ arereserved and
cannot be used as labels.

datal:dc.b $56
c_reg:ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a multiply defined
symbol error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.

© 2003 COMIC Software Using The Assembler 193

Assembly Language Syntax

wait: macro
\@loop: brset PORTA,1,\@loop
endm
Temporary Labels

The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such alabel is composed by a dec-
imal number immediately followed by a‘$ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined

Error message.

1$: deca
bne 1%

2%: decb
bne 2%

Temporary labels do not appear in the symbol table or the cross refer-
encelist.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

functionl:

10%: [Idab var
beq 10%
stab var2
local

10%: Oldaa var2
beq 10%
staa var
rts

function2:

10%: Oldaa var2
suba var
bne 10%
rts

Constants
The assembler accepts numeric constants and string constants.

Numeric constants are expressed in different bases dependingona pre-
fix character asfollows:

194 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

10 decimal (no prefix)
%1010 binary
@12 octal
$A hexadecimal

The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

Suffix Base

D, d or none decimal (no prefix)
Borb binary
Qorq octal

OAH or OAh hexadecimal

The suffix letter can be entered upper case or lower case. Hexadecimal
numbers still need to start with a digit.

Sring constants are a series of printable characters between single or
double quote characters:

“This is a string”’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for adatainitiaization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b “0123456789ABCDEF”
start:cmpa #’A” ; ASCII value of ’A”

© 2003 COMIC Software Using The Assembler 195

Assembly Language Syntax

Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

A special label written “*’ is used to represent the current location
address. Note that when **’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operatorsis:

+ addition

- subtraction (negation)

* multiplication
division

% remainder (modulus)

& bitwise and

| bitwise or

n bitwise exclusive or

~ bitwise complement

<< left shift

>> right shift

== equality

1= difference

< less than

<= less than or equal

> greater than

>= greater than or equal
&& logical and

11 logical or

! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
labell - label2

NOTE

The difference of two relocatable labelsis valid only if both symbols are
not external symbols, and are defined in the same section.

196 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

An expression may also be constructed with a specia operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These special operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operatorsif allowed.

high - extract the upper byte of the 16-bit expression
low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. Thisis used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction is a list of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macr o begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
clra ; prepare MSB
tstb ; test sign
bpl \@pos ; if not positive
coma ; invert MSB
\@pos:
endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of a into x. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

lIdab char+1; load LSB

signex ; expand macro
std char ; store result

© 2003 COMIC Software Using The Assembler 197

Assembly Language Syntax

The resulting code will be the same as if the following code had been
written:

Idab char+1; load LSB

clra ; prepare MSB
tstb ; test sign
bpl pos ; if not positive
coma ; Invert MSB

pos:
std char ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,...\9)\A,..\Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by alist of argu-
ment named, each prefixed by a\ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a\ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
aphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using the numbered syntax:

signex:macro ; sign extension
clra ; prepare MSB
Idab \1+1 ; load LSB
bpl \@pos ; if not positive

coma ; Invert MSB
\@pos:std \1 ; store MSB
endm ; end of macro

198 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

And called:

signex char ; sign extend char
This macro may also be written using the named syntax:
signex:macro\value; sign extension

clra ; prepare MSB

Idab \value; load LSB
bpl \@pos ; if not positive

coma ; invert MSB
\@pos:std \(value); store MSB
endm ; end of macro

The syntax of amacro call is:

name>[.<ext>] [<arguments>]

The special parameter \O corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion isasingle letter which may represent the size of the operands and
the result. For example:

table:macro
dc.\0 1,2,3,4
endm

When invoking the macro:
table.b

will generate atable of byte:
dc.b 1,2,3,4

When invoking the macro:
table.w

will generate atable of word:

dc.w 1,2,3,4

© 2003 COMIC Software Using The Assembler 199

Assembly Language Syntax

The special parameter * isreplaced by a sequence containing the list of
al the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or arepeat! directive.

The directive mexit may be used at any time to stop the macro expan-
sion. It isgenerally used in conjunction with a conditional directive.

A macro call may be used within another macro definition. A macro
definition cannot contain another macro definition.

If alisting is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
al the expanded lines are printed with al the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives

A conditional directive alows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ldx #message
jsr print
endif

If the symbol debug is equal to 1, the next two lines are assembled.
Otherwise they are skipped.

if offset 1= 1 ; if offset too large

addptroffset ; call a macro

else ; otherwise

inx ; increment X register
endif

If the symbol offset is not one, the macro addptr is expanded with off-
set as argument, otherwise the inx instruction is directly assembled.

200 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If alisting is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

data: section ; defines data section
text: section ; defines text section
start:

1dx #value; fills text section

jmp print

switchdata ; use now data section
value:

dc.b 1,2,3 ; Fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name istoo long, it issimply trun-
cated without any error message.

The assembler predefines the following sections, meaning that a section
directive is not needed before to use them:

Section | Description
text executable code
.data initialized data
.bss uninitialized data
.bsct initialized data in zero page
.ubsct uninitialized data in zero page

© 2003 COMIC Software Using The Assembler 201

Assembly Language Syntax

The sections .bsct and .ubsct are used for locating datain the zero page
of the processor. The zero page is defined as the memory addresses
between 0x00 and OxFF inclusive, i.e. the memory directly addressable
by a single byte. Several processors include special instructions and/or
addressing modes that take advantage of this specia addressrange. The
Cosmic assembler will automatically use the most efficient addressing
mode if the data objects are allocated in the .bsct, .ubsct or a section
with the same attributes. If zero page data objects are defined in another
file then the directive xref.b must be used to externally reference the
data object. This directive specifies that the address for these data
object is only one byte and therefore the assembler may use 8 hit
addressing modes.

The operator “>" may optionally be used to force the assembler to use
extended addressing instead of direct addressing for addressing zero
page objects.

xref var

xref.b zvar
switch.bsct

zvar2: ds.b 1
switch.bss

var2: ds.b 1
switch.text
ldaa var
ldaa zvar
ldaa var2
ldaa var2
end

Includes

The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (*;’ for MSDOS and ‘:" for UNIX).

202 Using The Assembler © 2003 COSMIC Software

Branch Optimization

The -h option can specify afileto be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.

Branch Optimization

Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset islimited to therange [-128,127]. If such an
instruction cannot be encoded properly, the assembler will replace it by
a sequence containing an inverted branch to the next location followed
immediately by a jump to the original target address. The assembler
keep track of the last replacement for each label, so if along branch has
aready been expanded for the same label at a location close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the already existing jump instruction to
the specified label.

beq farlabel becomes bne *+5
jmp farlabel

Note that abra instruction will be replaced by asinglejmp instruction if
it cannot be encoded as arelative branch.

A jmp or jsr instruction will be replaced by a bra or bsr instruction if
the destination addressis in the same section than the current one, and if
the displacement isin the range allowed by arelative branch.

Old Syntax

The -m option allows the assembler to accept old constructs which are
now obsolete. The following features are added to the standard behav-
iour:

o alabel starting in the first column does not need to be ended with
a‘':’ character;

© 2003 COMIC Software Using The Assembler 203

C Qyle Directives

e acomment line may begin witha‘*’ character;

* no eror message is issued if an operand of the dc.b directive is

too large;

¢ the section directive handles numbered sections;

The comment separator at the end of aninstructionisstill the*;’ charac-
ter because the **’ character isinterpreted as the multiply operator.

C Style Directives

The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the

equivalence with the standard directives:

C Style

Assembler Style

#include “file”

include “file”

#define label expression

equ expression

#define label

equ 1

#if expression

if expression

#ifdef label ifdef label
#ifndef label ifndef label
telse

#endif

#error “message”

fail “message”

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol
equal to a numerical value.

Directives

This section consists of quick reference descriptions for each of the

cab811 assembler directives.

204 Using The Assembler

© 2003 COSMIC Software

C Library - align

align

Description
Align the next instruction on a given boundary

Syntax

| align <expression>, [<fFill_value>]

Function

The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value>, is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also

even

© 2003 COMIC Software Using The Assembler 205

C Library - base

base

Description
Define the default base for numerical constants

Syntax

‘ base <expression>

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal baseis used
by default. When another base is selected, it is no more possible to enter
decimal constants.

Example
base 8 ; select octal base
ldaa #377 ; load $FF

206 Using The Assembler © 2003 COSMIC Software

C Library - bsct

bsct

Description
Switch to the predefined .bsct section.

Syntax
| bsct

Function
The bsct directive switches input to a section named .bsct, also known

as the zero page section. The assembler will automatically select the
direct addressing mode when referencing an object defined in the .bsct
section.

Example
bsct

c_reg:
ds.b 1

Notes
The .bsct section is limited to 256 bytes, but the assembler does not

check the .bsct section size. Thiswill be done by the linker.

See Also
section, switch

© 2003 COMIC Software Using The Assembler 207

C Library - clist
clist

Description
Turn listing of conditionally excluded code on or off.

Syntax
‘ clist [on]off]

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lines which are not
assembled as a consequence of if, else and endif directives.

See Also
if, else, endif

208 Using The Assembler © 2003 COSMIC Software

C Library - dc

dc

Description
Allocate constant(s)

Syntax

| dc[-size] <expression>[,<expression>...]

Function
The dc directive alocates and initializes storage for constants. If

<expression> isastring constant, one byteis allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will allocate one byte per <expression>.
The dc.w directive will allocate one word per <expression>.

Thedc.| directive will alocate one long word per <expression>.

Example
digit:dc.b 10,70123456789"
dc.w digit

Note

For compatibility with previous assemblers, the directive fcb isaliasto
dc.b, and the directive fdb is diasto dc.w.

© 2003 COMIC Software Using The Assembler 209

C Library - dcb
dcb

Description
Allocate constant block

Syntax

‘ dcb.<size> <count>,<value>

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size areais the number of the specified value <count> of
<size>. The memory area can be initialized with the <value> specified.

The dcb and dcb.b directives will alocate one byte per <count>.
The dcb.w directive will allocate one word per <count>.
The dcb.| directive will allocate one long word per <count>.

Example
digit:dcb.b 10,5 ; allocate 10 bytes,
; all initialized to 5

210 Using The Assembler © 2003 COSMIC Software

C Library - dlist

dlist
Description

Turn listing of debug directives on or off.

Syntax
| dlist [on]off]

Function
The dlist directive controls the visibility of any debug directivesin the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

© 2003 COMIC Software Using The Assembler 211

CLibrary - ds
ds

Description
Allocate variable(s)

Syntax

‘ ds[-size] <space>

Function
The ds directive alocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The ds and ds.b directives will allocate <space> bytes.
The ds.w directive will allocate <space> words.
The ds.l directive will allocate <space> long words.

Example
ptlec:ds.b 2
ptecr:ds.b 2
chrbuf:ds.w 128

Note

For compatibility with previous assemblers, the directive rmb is alias
to ds.b.

212 Using The Assembler © 2003 COSMIC Software

ClLibrary - else

else

Description
Conditional assembly

Syntax

iT <expression>
instructions
else
instructions
endif

Function
The else directive follows an if directive to define an alternative condi-

tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previousif directive.

Example
if offset =1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

Note

The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

© 2003 COMIC Software Using The Assembler 213

C Library - elsec

elsec

Description
Conditional assembly

Syntax

iT <expression>
instructions
elsec
instructions
endc

Function
The elsec directive follows an if directive to define an alternative condi-

tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previousif directive.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note

The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

214 Using The Assembler © 2003 COSMIC Software

C Library - end

end

Description
Stop the assembly

Syntax

| end

Function
The end directive stops the assembly process. Any statements follow-

ing it areignored. If the end directive is encountered in anincluded file,
it will stop the assembly process for the included file only.

© 2003 COMIC Software Using The Assembler 215

C Library - endc

endc

Description
End conditional assembly

Syntax

if<cc> <expression>
instructions
endc

Function
The endc directive closes an if<cc> or elsec conditional directive. The

conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or

elsec directive.
Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note
The endc and endif directives are equivalent and may used without dis-

tinction. They are provided for compatibility with previous assemblers.

See Also
if<ce>, elsec, clist, end

216 Using The Assembler © 2003 COSMIC Software

C Library - endif

endif

Description
End conditional assembly

Syntax

iT <expression>
instructions
endif

Function
The endif directive closes an if or €lse conditional directive. The condi-

tional status reverts to the one existing before entering the if directive.
The endif directive applies to the closest previousif or else directive.

Example
if offset !'= 1 ; if offset too large

addptroffset ; call a macro
else ; otherwise

inx ; increment X register
endif

Note
The endif and endc directives are equivalent and may used without dis-

tinction. They are provided for compatibility with previous assemblers.

See Also
if, else, clist

© 2003 COMIC Software Using The Assembler 217

C Library - endm

endm

Description
End macro definition

Syntax

label: macro
<macro_body>
endm

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of
; a string in a byte prior to the string

Itext:macro
ds.b \@2 - \@1

\@1:
ds.b \1
\@2:
endm
See Also
mexit, macro

218 Using The Assembler © 2003 COSMIC Software

C Library - endr

endr

Description
End repeat section

Syntax

repeat
<macro_body>
endr

Function
The endr directiveis used to terminate repeat sections.

Example
; shift a value n times
asIn: macro
repeat \1
aslb
endr
endm

; use of above macro
asln 10;shift 10 times

See Also
repeat

© 2003 COMIC Software Using The Assembler 219

CLibrary - equ
equ

Description
Give a permanent value to a symbol

Syntax

‘ label: equ <expression>

Function
The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value altered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

Example
false:equ O ; initialize these values
true: equ 1
tablen:equ tabfin - tabsta;compute table length
nul: equ $0; define strings for ascii characters
soh: equ $1
stx: equ $2
etx: equ $3
eot: equ $4
eng: equ $5

See Also
lit, set

220 Using The Assembler © 2003 COSMIC Software

C Library - even

even

Description
Assemble next byte at the next even address relative to the start of a
section.

Syntax

| even [<fill_value>]

Function
The even directive forces the next assembled byte to the next even
address. If abytesisadded to the section, it is set to the value of thefill-
ing byte defined by the -f option. If <fill_value>, is specified, it will be
used locally as the filling byte, instead of the one specified by the -f

option.
Example
vowtab:dc.b "aeiou”
even ; ensure aligned at even address

tentab:dc.w 1, 10, 100, 1000

© 2003 COMIC Software Using The Assembler 221

C Library - fail

fail

Description
Generate error message.

Syntax

‘ fail "string”

Function
Thefail directive outputs “string” as an error message. No output fileis
produced as this directive creates an assembly error. fail is generally
used with conditional directives.

Example
Max: equ 512
ifge value - Max
fail “Value too large”

222 Using The Assembler © 2003 COSMIC Software

C Library - if

If

Description
Conditional assembly
Syntax
if <expression> or if <expression>
instructions instructions
endif else
instructions
endif
Function

The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive applies to
the closest previousiif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
if offset !'= 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

See Also

else, endif, clist

© 2003 COMIC Software Using The Assembler 223

I!il C Library - ifc

Ifc

Description
Conditional assembly
Syntax
ifc <stringl>,<string2> or ifc <stringl>,<string2>
instructions instructions
endc elsec
instructions
endc
Function

The ifc, else and endc directives alow conditiona assembly. The ifc
directive is followed by a constant expression. If <stringl> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process appliesto the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument
Idab #45 ; load 45
elsec ; otherwise. ..
Idab #0
endc
See Also

elsec, endc, clist

224 Using The Assembler © 2003 COSMIC Software

C Library - ifdef

Ifdef

Description
Conditional assembly
Syntax
ifdef <label> or ifdef <label>
instructions instructions
endc elsec
instructions
endc
Function

The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directiveisfollowed by alabel <label>. If <label> isdefined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be aforward reference.

If the ifdef statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifdef offsetl ; if offsetl is defined
addptroffsetl ; call a macro
elsec ; otherwise
addptroffset2 ; call a macro
endif

See Also

ifndef, elsec, endc, clist

© 2003 COMIC Software Using The Assembler 225

I!il C Library - ifeq
Ifeq

Description
Conditional assembly
Syntax
ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec
instructions
endc
Function

The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
appliesto the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul
tsta ; just test it
elsec ; otherwise
adda #offset ; add to accu
endc

See Also

elsec, endc, clist

226 Using The Assembler © 2003 COSMIC Software

C Library - ifge

Ifge

Description
Conditional assembly
Syntax
ifge <expression> or ifge <expression>
instructions instructions
endc elsec
instructions
endc
Function

The ifge, elsec and endc directives allow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if theifge expression isgreater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 227

I!il C Library - ifgt
Ifgt

Description
Conditional assembly
Syntax
ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec
instructions
endc
Function

Theifgt, elsec and endc directives allow conditional assembly. Theifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If theifgt statement endswith an elsec directive, the expression result is
inverted and the same process appliesto the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifgt offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also

elsec, endc, clist

228 Using The Assembler © 2003 COSMIC Software

C Library - ifle

iIfle

Description
Conditional assembly
Syntax
ifle <expression> or ifle <expression>
instructions instructions
endc elsec
instructions
endc
Function

Theifle, elsec and endc directives allow conditional assembly. Theifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifle statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifle offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 229

I!il C Library - iflt
It

Description
Conditional assembly

Syntax
iflt <expression> or iflt <expression>
instructions instructions
endc elsec
instructions
endc
Function

The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
appliesto the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
iflt offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also

elsec, endc, clist

230 Using The Assembler © 2003 COSMIC Software

C Library - ifnc

Ifnc

Description
Conditional assembly
Syntax
ifnc <stringl>,string2> or ifnc <stringl><string2>
instructions instructions
endc elsec
instructions
endc
Function

The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <stringl> and
<string2> are different, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or el sec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifnc “hello”, \2
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif
See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 231

C Library - ifndef
Ifndef

Description
Conditional assembly
Syntax
ifndef <label> or ifndef <label>
instructions instructions
endc elsec
instructions
endc
Function

The ifndef, else and endc directives alow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be aforward reference.

If the ifndef statement ends with an elsec directive, the expression
result isinverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifndefoffsetl ; if offsetl is not defined
addptroffset2 ; call a macro
elsec ; otherwise
addptroffsetl ; call a macro
endif
See Also

ifdef, elsec, endc, clist

232 Using The Assembler © 2003 COSMIC Software

C Library - ifne

Ifne

Description
Conditional assembly
Syntax
ifne <expression> or ifne <expression>
instructions instructions
endc elsec
instructions
endc
Function

The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul
adda #offset ; add to accu
elsec ; otherwise
tsta ; just test it
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 233

C Library - include

Include

Description

Include text from another text file

Syntax

‘ include "'filename"

Function

The include directive causes the assembler to switch its input to the
specified filename until end of fileisreached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/l owercase characters should be respected.

Example
include
include
include
include

234 Using The Assembler

“datstr”
“bldstd”
“matmac”’
“ports82” ;

, use
; use
, use

use

data structure library
current build standard
maths macros

ports definition

© 2003 COSMIC Software

C Library - list

list
Description

Turn on listing during assembly.

Syntax
| list

Function
Thelist directive controlsthe parts of the program which will be written

tothelisting file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

© 2003 COMIC Software Using The Assembler 235

C Library - lit
lit

Description
Give atext equivalent to a symbol

Syntax
‘ label: lit “string” l

Function
The lit directive is used to associate a text string to a symbol (label).
This symboal is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: Tlit “H#5”
ldx nbr ; expand as “ldx #5”
See Also
equ, set

236 Using The Assembler © 2003 COSMIC Software

C Library - local

Description

Create anew local block

Syntax

|local

| local

Function

The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard |abels or local directives or a combination of the two.

Example

var: ds.b 1
var2: ds.b 1

functionl:

10%: Idab
beq
stab

local

10%: Idaa
beq
staa
rts

var
10%
var2

var2
10%
var

© 2003 COSMIC Software

Using The Assembler 237

C Library - macro

macro

Description
Define amacro

Syntax

label: macro
<macro_body>
endm

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name aready used as amacro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a\ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form \1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a\ character. The macro variable
name can also be enclosed by parenthesis to avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The special parameter * is expanded to the full list of passed arguments
separated by commas.

238 Using The Assembler © 2003 COSMIC Software

C Library - macro

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character *.". For more
information, see “ Macro Instructions” on page 197.

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@ may be prepended to a label in order to alow a
unigue name expansion. The sequence ‘\@ will be replaced by a
unique number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; in a byte in front of the string using numbered syntax

Itext:macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as first operand
\@2:

endm

; define a macro that places the length of a string
; In a byte in front of the string using named syntax

Itext:macro \string
dc.b \@2-\@1

\@1:
dc.b \string ; text given as first operand
\@2:
endm
See Also
endm, mexit

© 2003 COMIC Software Using The Assembler 239

C Library - messg
MeSy

Description
Send amessage out to STDOUT

Syntax

messg ‘“‘<text>"’
messg “<text>’

Function
The messg directive is used to send a message out to the host system’s
standard output (STDOUT).
Example
messg “Test code for debug”
ldaa _#2
staa _SCR
See Also
title

240 Using The Assembler © 2003 COSMIC Software

C Library - mexit

mexit

Description
Terminate a macro definition

Syntax

| mexit

Function
The mexit directive is used to exit from a macro definition before the

endm directive is reached. mexit is usualy placed after a conditional
assembly directive.

Example
ctrace:macro
if tflag == 0

mexit
endif
jsr\1
endm
See Also
endm, macro

© 2003 COMIC Software Using The Assembler 241

C Library - mlist
mlist

Description
Turn on or off listing of macro expansion.

Syntax

‘ mlist [on]off]

Function
The mlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it isignored otherwise.

The parts of the program to be listed are the lines which are assembled
in amacro expansion.

See Also

macro

242 Using The Assembler © 2003 COSMIC Software

C Library - nolist

nolist

Description
Turn off listing.

Syntax

| nolist

Function
The nolist directive controls the parts of the program which will be not
written to the listing file until an end or alist directiveis encountered. It
iseffective if and only if listings are requested; it isignored otherwise.

See Also
list

Note
For compatibility with previous assemblers, the directive nol is aias to

nolist.

© 2003 COMIC Software Using The Assembler 243

C Library - nopage

nopage

Description
Disable pagination in the listing file

Syntax

‘ nopage

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It isignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

244 Using The Assembler © 2003 COSMIC Software

C Library - offset

offseat

Description
Creates absolute symbols

Syntax

| offset <expression>

Function

The offset directive starts an absol ute section which will only be used to
define symbals, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example
offset0
next:
ds.b 2
buffer:
ds.b 80

switch.text

size:
Idy next,Xx; ends the offset section

© 2003 COMIC Software Using The Assembler 245

CLibrary - org

org

Description
Sets the location counter to an offset from the beginning of a section.

Syntax

‘ org <expression>

Function
<expression> must be a valid absolute expression. It must not contain
any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

246 Using The Assembler © 2003 COSMIC Software

C Library - page

pPage
Description

Start anew pagein thelisting file

Syntax
| page

Function
The page directive causes aformfeed to be inserted in the listing output

if pagination is enabled by either atitle directive or the -ft option.

Example

xref mult, div

page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

© 2003 COMIC Software Using The Assembler 247

C Library - plen

plen

Description
Specify the number of lines per pagesin thelisting file

Syntax
‘ plen <page_length

Function

The plen directive causes <page_|length> lines to be output per pagein
the listing output if pagination is enabled by either a title directive or
the -ft option. If the number of lines aready output on the current page
is less than <page length>, then the new page length becomes effec-
tive with <page length>. If the number of lines already output on the
current page is greater than or equal to <page length>, a new page will
be started and the new page length is set to <page length>.

Example
plen 58

See Also
page

248 Using The Assembler © 2003 COSMIC Software

C Library - repeat

repeat

Description
Repeat alist of lines a number of times

Syntax

repeat <expression>
repeat_body
endr

Function
Therepeat directiveis used to cause the assembl er to repeat the follow-
ing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the expression
operand. The repeat directive is equivalent to a macro definition fol-
lowed by the same number of calls on that macro.

Example
; shift a value n times
asln: macro
repeat \1
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

© 2003 COMIC Software Using The Assembler 249

C Library - repeatl
repeatl

Description
Repeat alist of lines a number of times

Syntax

repeatl <arguments>
repeat_body
endr

Function

The repeat! directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl
directive is equivaent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a\ character. In such a case, the repeat argument is
specified by its name prefixed by a\ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been

reached.
Example
; test a value using the numbered syntax
repeatl 1,2,3
add #\1 ; add to accu
endr
end
or
; test a value using the named syntax
repeatl \count,1,2,3
add #\count; add to accu
endr
end

250 Using The Assembler © 2003 COSMIC Software

C Library - repeatl

will both produce:

2 ; test a value

9 0000 c30001 add #1

9 0003 c30002 add #2

9 0006 c30003 add #3
10 end

See Also
endr, repeat, rexit

© 2003 COSMIC Software

; add to accu

; add to accu

; add to accu

Using The Assembler 251

C Library - restore

restore

Description
Restore saved section

Syntax

‘ restore

Function
The restore directive is used to restore the last saved section. This is

equivalent to a switch to the saved section.

Example
switch.bss
var: ds.b 1
var2: ds.b 1
save
switch.text

functionl:

10%: QIdab var
beq 10%
stab var2

function2:

10%: Ildaa var2
suba var
bne 10%
rts
restore

var3: ds.b 1

var4: ds.b 1

switch .text
lIdaa var3

staa var4
end

See Also

save, section

252 Using The Assembler © 2003 COSMIC Software

C Library - rexit

rexit

Description
Terminate a repeat definition

Syntax

| rexit

Function
The rexit directive is used to exit from arepeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times
asln: macro
repeat \1
if\1==0
rexit
endif
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeat, repeatl

© 2003 COMIC Software Using The Assembler 253

IIEiI C Library - save

save

Description
Save section

Syntax

‘ save

Function

The save directive is used to save the current section so it may be

restored later in the source file.

Example
switch.bss

var: ds.b 1

var2: ds.b 1
save
switch .text

functionl:

10%: [Idab var
beq 10%
stab var2

function2:

10%: Ildaa var2
suba var
bne 10%$
rts
restore

var3: ds.b 1

var4: ds.b 1

switch .text

lIdaa var3
staa var4
end
See Also
restore, section

254 Using The Assembler

© 2003 COSMIC Software

C Library - section

section

Description
Define anew section

Syntax

| <section_name>: section [<attributes>]

Function

The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
already existing section. If no name and no attributes are specified to
the section, the default is to defined the section as atext section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a‘+' character or not
prefixed, or deleted if prefixed by a‘-' character. Several attributes may
be specified separated by commas. Attribute keywords are;

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance
even enforce even starting address and size

zpage | enforce 8 bit relocation

long enforce 32 bit relocation

Example
CODE: section.text; section of text
labl: ds.b 5
DATA: section.data; section of data
lab2: ds.b 6
switchCODE
lab3: ds.b 7
switchDATA
lab4: ds.b 8

© 2003 COMIC Software Using The Assembler 255

C Library - section

This will place 1ab1 and then 1ab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame:section.bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

.bit: section+zpage,+even,-hilo

The .bit section is declared using 8 bit relocation, with an even aign-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, alabelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: sectionl ; define section 1
nop
.ram: section2 ; define section 2
dc.b 1
sectionl ; switch back to section 1
nop

It is till possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct

256 Using The Assembler © 2003 COSMIC Software

C Library - set

set

Description

Give aresetable value to a symbol
Syntax

| label: set <expression>
Function

The set directive alows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembled.

Example
OFST: set 10

See Also
equ, lit

© 2003 COMIC Software Using The Assembler 257

C Library - spc
SPC

Description
Insert a number of blank lines before the next statement in the listing
file.

Syntax

‘ spc <num_lines>

Function
The spc directive causes <num lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing isrequested, 5 blank lineswill beinserted, then thetitle will be
output.

See Also
title

258 Using The Assembler © 2003 COSMIC Software

C Library - switch

switch

Description
Place code into a section.

Syntax

| switch <section_name>

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be already defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch.bss
buffer:ds.b 512
xdef buffer

Thiswill place buffer into the .bss section.

See Also
section, bsct

© 2003 COMIC Software Using The Assembler 259

C Library - tabs

tabs

Description
Specify the number of spacesfor atab character in thelisting file

Syntax

‘ tabs <tab size>

Function
The tabs directive sets the number of spaces to be substituted to the tab
character in the listing output. The minimum value of <tab size> is0
and the maximum value is 128.

Example
tabs 6

260 Using The Assembler © 2003 COSMIC Software

C Library - title

title

Description
Define default header

Syntax

| title "name"

Function
Thetitle directive is used to enable the listing pagination and to set the

default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
page, plen

Note

For compatibility with previous assemblers, the directive ttl is alias to
title.

© 2003 COMIC Software Using The Assembler 261

C Library - xdef
xdef

Description
Declare avariable to be visible

Syntax
‘ xdef identifier[,identifier...]

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
alow for usage of common headers.

Example
xdef sqgrt ; allow sqgrt to be called
; from another module
sqrt: ; routine to return a square root
; of a number >= zero

See Also
xref

262 Using The Assembler © 2003 COSMIC Software

C Library - xref

Xr ef

Description
Declare symbol as being defined el sewhere

Syntax
| xref[.b] identifier[,identifier...]

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-

tion.
Example
xref otherprog
xref._bzpage ; is in .bsct section
See Also
xdef

© 2003 COMIC Software Using The Assembler 263

CHAPTER

6

Using The Linker

This chapter discusses the clnk linker and details how it operates. It
describes each linker option, and explains how to use the linker's many
specia features. It aso provides example linker command lines that
show you how to perform some useful operations. This chapter includes
the following sections;

* Introduction

* Overview

» Linker Command File Processing
e Linker Options

» Section Relocation

e Setting Bias and Offset

e Linking Objects

» Linking Library Objects

* Automatic Data Initialization

e Checksum Computation

© 2003 COSMIC Software Using The Linker 265

e Shared DataHandling

* DEFsand REFs

e Specia Topics

e Description of The Map File

e Linker Command Line Examples

266 Using The Linker © 2003 COSMIC Software

Introduction

Introduction

The linker combines relocatable object files, selectively loading from
libraries of such files made with clib, to create an executable image for
standal one execution or for input to other binary reformatters.

clnk will also alow the object image that it creates to have local symbol
regions, so the same library can be loaded multiple times for different
segments, and so that more control is provided over which symbols are
exposed. On microcontroller architectures this feature is useful if your
executable image must be loaded into several noncontiguous areas in
memory.

NOTE

The terms “ segment” and “ section” refer to different entities and are
carefully kept distinct throughout this chapter. A “ section” is a contigu-
ous subcomponent of an object module that the linker treats as indivisi-
ble.

The assembler creates several sections in each object module. The
linker combines input sections in various ways, but will not break one
up. Thelinker then maps these combined input sections into output seg-
ments in the executable image using the options you specify.

A “segment” is a logically unified block of memory in the executable
image. An example is the code segment which contains the executable
instructions.

For most applications, the “ sections” in an object module that the linker
accepts as input are equivalent to the “segments’ of the executable
image that the linker generates as output.

© 2003 COSMIC Software Using TheLinker 267

n Overview

Overview

You use the linker to build your executable program from a variety of
modules. These modules can be the output of the C cross compiler, or
can be generated from handwritten assembly language code. Some
modules can be linked unconditionally, while others can be selected
only as needed from function libraries. All input to the linker, regard-
less of its source, must be reduced to object modules, which are then
combined to produce the program file.

The output of the linker can be in the same format as its input. Thus, a
program can be built in several stages, possibly with special handling at
some of the stages. It can be used to build freestanding programs such
as system bootstraps and embedded applications. It can also be used to
make object modules that are loaded one place in memory but are
designed to execute somewhere else. For example, a data segment in
ROM to be copied into RAM at program startup can be linked to run at
its actual target memory location. Pointers will be initialized and
address references will bein place.

As a side effect of producing files that can be reprocessed, clnk retains
information in the final program file that can be quite useful. The sym-
bol table, or list of external identifiers, is handy when debugging pro-
grams, and the utility cobj can be made to produce a readable list of
symbols from an object file. Finaly, each object module has in its
header useful information such as segment sizes.

In most cases, the final program file created by clnk is structurally iden-
tical to the object module input to clnk. The only difference is that the
executable file is complete and contains everything that it needs to run.
There are a variety of utilities which will take the executable file and
convert it to a form required for execution in specific microcontroller
environments. The linker itself can perform some conversions, if all
that is required is for certain portions of the executable file to be
stripped off and for segments to be relocated in a particular way. You
can therefore create executable programs using the linker that can be
passed directly to aPROM programmer.

268 Using The Linker © 2003 COSMIC Software

Overview

The linker works as follows:

e Options applying to the linker configuration. These options are
referred to in this chapter as “ Global Command Line Options’ on
page 273.

» Command file options apply only to specific sections of the object
being built. These options are referred to in this chapter as “ Seg-
ment Control Options’ on page 274.

» Sections can be relocated to execute at arbitrary placesin physical
memory, or “stacked” on suitable storage boundaries one after the
other.

« Thefina output of the linker is a header, followed by all the seg-
ments and the symbol table. There may also be an additional
debug symboal table, which contains information used for debug-
ging purposes.

© 2003 COSMIC Software Using The Linker 269

B Linker Command File Processing

Linker Command File Processing

The command file of the linker is a small control language designed to
give the user a great deal of power in directing the actions of the linker.
The basic structure of the command file is a series of command items.
A command item is either an explicit linker option or the name of an
input file (which serves as an implicit directiveto link in that file or, if it
isalibrary, scan it and link in any required modules of the library).

An explicit linker option consists of an option keyword followed by any
parameters that the option may require. The options fall into five
groups:

(+seg <section>) controls the creation of new segments and has
parameters which are selected from the set of local flags.

(+grp <section>) controls the section grouping.

Group 2

(+inc*) is used to include files

Group 3

(+new, +pub and +pri) controls name regions and takes no parame-
ters.

(+def <symbol>) is used to define symbols and aliases and takes one
required parameter, a string of the form identl=ident2, a string of the
form identl=constant, or a string of the form identl=@segment.

(+spc <segment>) is used to reserve space in a particular <segment>
and has a required parameter

A description of each of these command line options appears below.

270 Using The Linker © 2003 COSMIC Software

Linker Command File Processing

The manner in which the linker rel ocates the various sectionsis control-
led by the +seg option and its parameters. If the size of a current seg-
ment is zero when a command to start a new segment of the same name
is encountered, it is discarded. Severa different sections can be redi-
rected directly to the same segment by using the +grp option.

clnk links the <files> you specify in order. If afile is a library, it is
scanned as long as there are modules to load. Only those library mod-
ules that define public symbols for which there are currently outstand-
ing unsatisfied references are included.

Inserting commentsin Linker commands
Each input line may be ended by a comment, which must be prefixed by
a# character. If you have to use the # as a significant character, you can
escape it, using the syntax \#.

Hereis an example for an indirect link file:

Link for EPROM

+seg .data -b0x2000

+seg .text -b0Oxe000 -n .text
+seg .const -a .text
\cx32\lib\crts.hl1l

modl.o mod2.o
\cx32\lib\libi.hl1
\cx32\lib\libm.h11

+seg .const -bOxffd6
vector.o

start data address

start eprom address
constants follow program
startup object file

input object files

C library

machine library

vectors eprom address

reset and interrupt vectors

HoH KRR R R

© 2003 COSMIC Software Using TheLinker 271

n Linker Options

Linker Options

The linker accepts the following options, each of which is described in
detail below.

clnk [options] <file.lkf> [<files>]
-bs# bank size
-e* error file name
-1*> library path
-m* map File name
-0* output File name
-p phys addr in map
-s symbol table only
-sa sort symbol by address
-sl output local symbols
-V verbose

The output file name and the link command file must be present on
the command line. The options are described in terms of the two groups
listed above; the global options that apply to the linker, and the segment
control options that apply only to specific segments.

272 Using The Linker © 2003 COSMIC Software

Linker Options

Global Command Line Options
The global command line options that the linker accepts are:

-bs#t set the window shift to #, which implies that the number of
bytes in a window is 2**#. The default value is 0 (bank
switching disabled). For more information, see the section
“ Address Arithmetic” on page 282.

-e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-1*> specify library path. You can specify up to 20 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-m* produce map information for the program being built to
file*.

-0* write output to thefile*. Thisoption isrequired and has no
default value.

-P display symbols with physical address instead of logical

addressin the map file.

-S create an output file containing only an absolute symbol
table, but still with an object file format. The resulting file
can then be used in another link to provide the symbol
table of an existing application.

-Sa display symbols sort by address instead of alphabetic order
in the map file.

-d output local symbolsin the executablefile.

-V be “verbose’.

© 2003 COSMIC Software Using TheLinker 273

n Linker Options

Segment Control Options
This section describes the segment control options that control the

structure of individual segments of the output module.

A group of optionsto control a specific segment must begin with a-+seg
option. Such an option must precede any group of options so that the
linker can determine which segment the options that follow apply to.
The linker allows up to 255 different segments.

+seg <section> <options> start a new segment loading assembler

274 Using The Linker

section type <section> and build it as directed by the
<options> that follow:

make the current segment follow the segment *, where *
refers to a segment name given explicitly by a -n option.
Options -b, -e and -0 cannot be specified if -a has been
specified.

set the physical start address of the segment to *. Option -e
or -a cannot be specified if -b has been specified.

do not output any code/data for the segment.

mark the segment you want to check. For more informa-
tion, see “ Checksum Computation” on page 288.

set the bank size for paged addresses calculation. This
option overwrites the global -bs option for that segment.

set the physical end address of the segment to *. Option -b
or -a cannot be specified if -e has been specified.

fill the segment up to the value specified by the -m option
with bytes whose value is#. This option has no effect if no
-m option is specified for that segment.

definethe initialization option. Valid options are:

© 2003 COSMIC Software

Linker Options

-it use this segment to host the descriptor and
images copies of initialized data used for auto-
matic data initialization

-id initialize this segment

-ib do not initialize this segment

-is mark this segment as shared data

-ik mark this segment as checksum segment

-m* set the maximum size of the segment to * bytes. If not
specify, there is no checking on any segment size. If a seg-
ment is declared with the -a option as following a segment
which is marked with the -m option, then set the maximum
available space for all the possible consecutive segments.

-n* set the output name of the segment to *. Segment output
names have at most 15 characters; longer names are trun-
cated. If no name is given with a -n option, the segment
inheritates a default name equal to its assembler section
name.

For example, use this option when you want to generate
the hex records for a particular PROM, such as:

+seg -text -b0x2000 -n proml
<object_files>
+seg .text -b0x4000 -n prom2
<object_files>

You can generate the hex records for prom1 by typing:

chex -n proml file.hl1 |

For more information, see Chapter 8, “The chex Utility”.

© 2003 COSMIC Software Using TheLinker 275

n Linker Options

-0*

set the logical start address of the segment to * if -b option
is specified or the logical end address if -e option is speci-
fied. The default is to set the logical address equal to the
physical address. Options -b and -e cannot be specified
both if -0 has been specified.

round up the starting address of the segment. The expres-
sion defines the power of two of the alignment value. The
option -r3 will aign the start address to an 8 bytes bound-
ary. This option has no effect if the start address is explic-
itly defined by a-b option.

define a space name for the segment. This segment will be
verified for overlapping only against segments defined
with the same space name. See “Qverlapping Control” on
page 283.

do not verify overlapping for the segment.

set the window size for banked applications, and activate
the automatic bank segment creation.

expandable segment. Allow a segment to spill in the next
segment of the same section type if its size exceeds the
value given by the -m option. The next segment must be
declared before the object causing the overflow. This
option has no effect if no -m option is specified for the
expendable segment. Options -e and -w cannot be speci-
fied.

Options defining a numerical value (addresses and sizes) can be entered
as constant, symbols, or simple expression combined them with ‘+" and
‘-’ operators. Any symbol used has to be defined before to be used,
either by a +def directive or loaded as an absolute symbol from a previ-
ously loaded object file. The operators are applied from left to right
without any priority and parenthesis () are not allowed. Such expres-
sions CANNOT contain any whitespace. For example:

+def START=0x1000
+def MAXSI1ZE=0x2000
+seg -text -bSTART+0x100 -mMAXSIZE-0x100

276 Using The Linker

© 2003 COSMIC Software

Linker Options

The first line defines the symbol START equals to the absolute value
1000 (hex value), the second line defines the symbol MAXSI1ZE equals
to the absolute value 2000 (hex value). The last line opens a .text seg-
ment located at 1100 (hex value) with a maximum size of 1f00 (hex
value). For more information, see the section “Symbol Definition

Option” on page 280.

Unless -b* is given to set the bss segment start address, the bss segment
will be made to follow the last data segment in the output file. Unless
-b* is given to set the data segment start address, the data segment will
be made to follow the last bsct segment in the output file. The bsct and
text segments are set to start at zero unless you specify otherwise by
using -b option. It is permissible for all segments to overlap, as far as
clnk is concerned; the target machine may or may not make sense of
this situation (as with separate instruction and data spaces).

NOTE

A new segment of the specified type will not actually be created if the last
segment of the same name has a size of zero. However, the new options
will be processed and will override the previous values.

Segment Grouping
Different sections can be redirected directly to the same segment with
the +grp directive:

+grp <section>=<section list>

where <section> is the name of the target section, and <section list> a
list of section names separated by commas. When loading an object file,
each section listed in theright part of the declaration will be loaded as if
it was named as defined in the left part of the declaration. The target
section may be a new section name or the name of an existing section
(including the predefined ones). When using a new name, this directive
has to be preceded by a matching +seg definition.

NOTE
Whitespaces are not allowed aside the equal sign ‘=" and the commas.

© 2003 COSMIC Software Using TheLinker 277

n Linker Options

Linking

Files on the Command line

The linker supports linking objects from the command line. The link
command file has to be modified to indicate where the objects are to be
loaded using the following @# syntax.

@1, @2,... include each individual object file at its positional location

on the command line and insert them at the respective
locationsin the link file (@1 is the first object file, and so

on).
@* include al of the objects on the command line and insert
them at thislocation in thelink file.
Example

Linking objects from the command line:

clnk -o test.hll test.lkf filel.o file2.0

Test_IKkfF:

+seg -text -b0x5000
+seg .data -b0x100
@1

+seg .text -b0x7000
@2

Is equivalent to

clnk -otest.hll test.lkf
test.lkf

+seg -text -b0x5000
+seg .data -b0x100
filel.o

+seg .text -b0x7000
file2.0

Include

Option

Subparts of the link command file can be included from other files by
using the following option:

+inc* include the file specified by *. This is equivalent to

expanding the text file into the link file directly at the loca-
tion of the +inc line.

278 Using The Linker © 2003 COSMIC Software

Linker Options

Example
Includethefile“seg2.txt” inthelink file“test. Ikf":

Test.lkf:

+seg -text -b0x5000
+seg -data -b0x100
filel.o file2.0
+seg -text -b0x7000
+inc seg2.txt

seQg2.txt:
modl.o0 mod2.o0 mod3.o

Resultant link file
+seg -text -b0x5000
+seg -data -b0x100
filel.o file2.0

+seg -text -b0x7000
modl.o mod2.o0 mod3.0

Private Region Options
Options that control code regions are:

+new start a new region. A “region” is a user definable group of
input object modules which may have both public and pri-
vate portions. The private portions of aregion are loca to
that region and may not access or be accessed by anything
outside the region. By default, anew region is given public

access.
+pub make the following portion of a given region public.
+pri make the following portion of a given region private.

© 2003 COSMIC Software Using The Linker 279

n Linker Options

Symbol Definition Option
The option controlling symbol definition and aliasesis:

+def* define new symbols to the linker. The string * must be of
the form:

« ident=constant where ident is avalid identifier and
constant is a valid constant expressed with the standard
C language syntax. Thisform is used to add ident to the
symbol table as a defined absolute symbol with avaue
equal to constant.

« identl=ident2 where identl and ident2 are both
valid identifiers. Thisform is used to define aliases. The
symbol identl is defined as the alias for the symbol
ident2 and goes in the symbol table as an external DEF
(a DEF is an entity defined by a given module) If
ident2 is not already in the symbol table, it is placed
there as a REF (a REF is an entity referred to by agiven
module).

o ident=@section where ident is a valid identifier,
and section is the name of a section specified asthe first
argument of a +seg directive. This form is used to add
ident to the symbol table as a defined symbol whose
value is the address of the next byte to be loaded in the
specified section.

« ident=start(segment) where segment is the name
given to asegment by the -n option. Thisform isused to
add ident to the symbol table as a defined symbol whose
value is the logical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=end(segment) where segment is the name
given to asegment by the -n option. Thisform isused to
add ident to the symbol table as a defined symbol whose
value is the logical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

280 Using The Linker © 2003 COSMIC Software

Linker Options

« ident=pstart(segment) where segment is the name
given to asegment by the -n option. Thisform isused to
add ident to the symbol table as a defined symbol whose
value isthe physical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=pend(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the physical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=size(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the size of the designated segment. This direc-
tive can be placed anywhere in the link command file,
even before the segment is defined.

NOTE
Whitespaces are not allowed aside the equal sign ‘=".

For more information about DEFs and REFs, refer to the section “ DEFs
and REFS’ on page 290.

Reserve Space Option
The following option is used to reserve space in a given segment:

+spc <segment>=<value> reserve <value> bytes of space at the
current location in the segment named <segment>.

+SpC <segment>=@section reserve a space at the current location
in the segment named <segment> equal to the current size
of the opened segment where the given section is loaded.
The size is evaluated at once, o if the reference segment
grows after that directive, there is no further modification
of the space reservation. If such a directive is used to
duplicate an existing section, it has to be placed in the link
command file after all the object files.

© 2003 COSMIC Software Using The Linker 281

n Section Relocation

NOTE
Whitespaces are not allowed aside the equal sign ‘=".

Section Relocation

The linker relocates the sections of the input files into the segments of
the output file.

An absolute section, by definition, cannot and should not be relocated.
The linker will detect any conflicts between the placement of this file
and its absolute address given at compile/assemble time.

In the case of abank switched system, it is still possible for an absolute
section to specify a physical address different from the one and at com-
pile/assembly time, the logical address MUST match the one specified
at compile/assemble time.

Address Arithmetic

The two most important parameters describing a segment are its bias
and its offset, respectively its physical and logica start addresses. In
nonsegmented architectures there is no distinction between bias and off-
set. The bias is the address of the location in memory where the seg-
ment is relocated to run. The offset of a segment will be equa to the
bias. In this case you must set only the bias. The linker sets the offset
automatically.

In the paged architecture of the MC68HC11K 4, the bias is the physical
address of the start of the segment in question, as seen from memory.
The offset isthe logical address of the start of the segment, as seen from
the processor.

The window shift specified by the -bs# option gives a measure of the
resolution used to hold the bias value of a segment. If the value speci-
fied by the -bs# option is n, then the resolution is 2**n. For example,
the value of n is 13 for the M C68HC11K 4.

In segmented architectures, the fundamental relationship between the
bias and the offset is:

282 Using The Linker © 2003 COSMIC Software

Setting Bias and Offset

bias = (SR << BS) + offset

where SR is the actual value used in a segment or page register and BS
is the window shift value you specify with the -bs# option. The linker
will be able to compute the value of the page register, given the bias and
the offset of any segment.

In nonsegmented architectures both BS and SR are usualy equa to
zero, so the formula becomes:

bias = offset

Overlapping Control

The linker is verifying that a segment does not overlap any other one,
by checking the physical addresses (bias). This control can be locally
disabled for one segment by using the -v option. For targets implement-
ing separated address spaces (such as bank switching), the linker allows
several segments to be isolated from the other ones, by giving them a
space name with the -s option. In such a case, a segment in a named
space is checked only against the other segments of the same space. The
unnamed segments are checked together.

Setting Bias and Offset

The bias and offset of a segment are controlled by the -b* option and
-0* option. The rules for dealing with these options are described
below.

Setting the Bias
If the -b* option is specified, the biasis set to the value specified by *.
Otherwise, the bias is set to the end of the last segment of the same
name. If the -e* option is specified, the bias is set to value obtain by
subtracting the segment size to the value specified by *.

Setting the Offset

If the -o* option is specified, the offset is set to the value specified by *.
Otherwise, the offset is set equal to the bias.

© 2003 COSMIC Software Using The Linker 283

n Setting Bias and Offset

Using Default Placement

If none of -b, -e or -0 options is specified, the segment may be placed
after another one, by using the -a* option, where * is the name of
another segment. Otherwise, the linker will try to use a default place-
ment based on the segment name. The compiler produces specific sec-
tions for code (.text) and data (.data, .bss, and .bsct). By default, .text
and .bsct segments start at zero, .data segment follows the latest .text
segment, and .bss segment follows the latest .data segment. Note that
thereis no default placement for the constants segment .const.

284 Using The Linker © 2003 COSMIC Software

Linking Objects

Linking Objects

A new segment is built by concatenating the corresponding sections of
the input object modules in the order the linker encounters them. As
each input section is added to the output segment, it is adjusted to be
relocated relative to the end portion of the output segment so far con-
structed. The first input object module encountered is rel ocated relative
to avalue that can be specified to the linker. The size of the output bss
segment is the sum of the sizes of the input bss sections.

Unless the -v option has been specified on a segment definition, the
linker checks that the segment physical address range does not overlap
any other segment of the application. Logical addresses are not checked
as bank switching creates several segments starting at the same logical
address.

Linking Library Objects

The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it's modules to avoid
unresolved references. The standard ANSI libraries are provided in
three versions to provide the level of support that your application
needs. This can save a significant amount of code space and execution
time when full ANSI double precision floating point support is not
needed. Thefirst letter after “lib” in each library file denotes the library
type (d for double, f for single precision, and i for integer). and the sec-
ond letter after “lib” specifiesthe ALU libraries version. See below.

libdM .h11Double Precision Library provides ANSI double precision
floating point support. Link this library before the other
libraries when needed.

libfM .h11Single Precision Library is used in conjunction with the
+sprec option to force all floats (even variables declared as
doubles) to single precision. This library is used for appli-
cations where only single precision floating point support
is needed. This library is significantly smaller and faster
than the double precision. Link thislibrary before the other
libraries when only single precision floats are used.

© 2003 COSMIC Software Using The Linker 285

n Linking Library Objects

NOTE

The +sprec compiler option MUST be used if you want to use the Single
Precision library in order to suppress normal ANS float to double pro-
motions.

[ibiM .h11 Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can till be
used for arithmetic but not with the standard library. Link
this library before the other libraries when only integer
libraries are needed.

NOTE

Compiler libraries must be located in a non-banked area of memory or
duplicated in each bank that uses them.

. Integer Single Double
Machine A g
Librar Only Precision | Precision
y Library Floats Floats
Standard libi.h11 libf.h11 libd.h11
. Libm.h11 — , ,
(M & N series) libia.h11 libfa.h11 libda.h11
Library Order
You should link your application with the libraries in the following
orders:
Integer Only Single Precision | Double Precision
Application Float Application | Float Application
libi.h11 libf.h11 libd.h11
libm.h11 libi.h11 libi.h11
libm.h11 libm.h11

For more information, see “Linker Command Line Examples’ on page
298.

286 Using The Linker © 2003 COSMIC Software

Automatic Data Initialization

Automatic Data Initialization

The linker is able to configure the executable for an automatic data ini-
tialization. This mechanism is initiated automatically when the linker
finds the symbol __idesc__ in the symbol table, as an undefined sym-
bal. clnk first locates a segment behind which it will add an image of
the data, so called the host segment. The default behaviour is to select
the first .text segment in the executable file, but you can override this by
marking one segment with the -it option.

Then, clnk looks in the executable file for initialized segments. All the
segments .data and .bsct are selected by default, unless disabled explic-
itly by the -ib option. Otherwise, renamed segments may aso be
selected by using the -id option. The -id option cannot be specified on a
bss segment, default or renamed. Once all the selected segments are
located, clnk builds a descriptor containing the starting address and
length of each such segment, and moves the descriptor and the selected
segments to the end of the host segment, without relocating the content
of the selected segments.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Initializing data in RAM” in Chapter 3.

Descriptor Format
The created descriptor has the following format:

dc.w start_prom_address ;starting address of the
; First image in prom
; for each segment:

dc.b flag ; segment type
dc.w start_ram_address ; start address of segment in ram
dc.w end_prom_address ; address of last data byte

; plus one in prom
; after the last segment:
dc.b O

The flag byte is used to detect the end of the descriptor, and also to
specify a type for the data segment. The actual value is equa to the
code of thefirst letter in the segment name.

The end address in PROM of one segment gives also the starting
address in prom of the following segment, if any.

© 2003 COSMIC Software Using The Linker 287

n Checksum Computation

The address of the descriptor will be assigned to the symbol __idesc__,
which is used by the crtsi.s startup routine. So all this mechanism will
be activated just by linking the crtsi.h1ifile with the application, or by
referencing the symbol __idesc__ in your own startup file.

If the host segment has been opened with a -m option giving a maxi-
mum size, clnk will check that there is enough space to move all the
selected segments.

Checksum Computation

This feature is activated by the detection of the symbol __ckdesc as
an undefined symbol. Thisis practically done by calling one of the pro-
vided checksum functions which uses that symbol and returns 0 if the
checksum is correct. Thisfunction isprovided in the integer library and
is the following:

_checksum() check a 8 hit checksum stored once for all the
selected segments.

You then have to update the link command file in two ways.

1) Mark the segments (usually code segments) you want to check, by
using the -ck option on the +seg line. Note that you need only to
mark the first segment of a hooked list, meaning that if a segment is
declared with -a option as following a segment which is marked
with the -ck option, it will automatically inherit the -ck marker and
will be also checked. Note also that if you are using the automatic
initialization mechanism, and if the code segment hosting the init
descriptor (-it) is also marked with -ck, the init segment and ALL
the initialization copy segments will also be checked.

2) Create an empty segment which will contain the checksum descrip-
tor. This has to be an empty segment, located wherever you want
with a-b or -a option. This segment will NOT be checked, even if
marked or hooked to a marked segment. The linker will fill this seg-
ment with a data descriptor alowing the checking function to scan
all the requested segments and compute the final crc. This segment
has to be specially marked with the option -ik to alow the linker to
recognize it as the checksum segment.

288 Using The Linker © 2003 COSMIC Software

Checksum Computation

Here is an example of link command file showing how to use -ck and
-ik:

LINKER EXAMPLE FOR CHECKSUM IMPLEMENTATION

mark the first segment of an attached list with -ck

H* HHH

+seg -text -b 0x8000 -n code -ck# this segment is marked
+seg .const -a code -n const# this one is implicitly marked
#

create an empty segment for checksum table marked with -ik
#

+seg .cksum -a const -n cksum -ik# checksum segment

#

remaining part should contain the verification code

#

+seg .data -b 0x100

crtsi.hll

test.o

libi_hl1

libm_hl1

+def __ _memory=@.bss

The descriptor built by the linker is a list of entries followed by the
expected CRC value, only once if function _checksum() is called. An
entry contains a flag byte, a start address and an end address. The flag
byte is non-zero, and is or'ed with 0x80 if the start address contains a
bank value (two words, page first then start address), otherwiseit isjust
one word with the start address. The end address is aways one word.
Thelast entry is always followed by anul byte (seen as an ending flag),
and immediately followed by the expected CRC if function
_checksum()is called. The linker compresses the list of entries by creat-
ing only one entry for contiguous segments (as long as they are in the
same space (-s* option) and in the same bank/page).

The current linker implements only on algorithm. Starting with zero,
the CRC byte/word is first rotated one bit left (atrue bit rotation), then
xor'ed with the code byte. The CRC values stored in the checksum
descriptor are the one's complement value of the expected CRC.

© 2003 COSMIC Software Using The Linker 289

n Shared Data Handling

Shared Data Handling

When the compiler is run with a static model allowing shared data,
each function not using the stack (nostack function) reserves a memory
area but does not alocate it. Based on the information received from the
debug symbol table, the linker isableto allocate all these areas by over-
lapping those areas corresponding to independent functions, i.e. these
functions that never call each other directly or through other functions.
This feature saves memory while keeping the ability to use arguments
and local variables in nostack functions.

NOTE
Recursive functions cannot be selected as nostack functions.

The linker will allocate the global amount of memory in a segment pro-
vided by the user. This segment is marked with the -is option, and hasto
be empty. It is located like all other segments using either -b or -a
options, as shown in the following example:

+seg .text -b0x1000

+seg .data -b0x100

+seg -.shared -bOx80 -mOx80 -is
filel file2

Object files filel and file2 should not produce any datain a .shared sec-
tion, otherwise the linker will complain and abort the linking process.

DEFs and REFs

The linker builds a new symbol table based on the symbol tablesin the
input object modules, but it is not a simple concatenation with adjust-
ments. There are two basic type of symbols that the linker puts into its
internal symbol table: REFs and DEFs. DEFs are symbols that are
defined in the object module in which they occur. REFs are symbols
that are referenced by the object module in which they occur, but are
not defined there.

The linker also builds a debug symbol table based on the debug symbol
tables in any of the input object modules. It builds the debug symbol
table by concatenating the debug symbol tables of each input object

290 Using The Linker © 2003 COSMIC Software

Special Topics

module in the order it encounters them. If debugging is not enabled for
any of input object module, the debug symbol table will be of zero
length.

An incoming REF is added to the symbol table as a REF if that symbol
is not aready entered in the symbol table; otherwise, it isignored (that
reference has aready been satisfied by a DEF or the reference has
already been noted). An incoming DEF is added to the symbol table as
a DEF if that symbol is not aready entered in the symbol table; its
value is adjusted to reflect how the linker is relocating the input object
module in which it occurred. If it is present as a REF, the entry is
changed to a DEF and the symbol’s adjusted value is entered in the
symbol table entry. If it is present as a DEF, an error occurs (multiply
defined symbol).

When the linker is processing a library, an object module in the library
becomes an input object module to the linker only if it has at least one
DEF which satisfies some outstanding REF in the linker's internal sym-
bol table. Thus, the simplest use of clnk is to combine two files and
check that no unused references remain.

The executable file created by the linker must have no REFsin its sym-
bol table. Otherwise, the linker emits the error message “ undefined sym-
bol” and returns failure.

Special Topics

This section explains some special linker capabilities that may have
limited applicability for building most kinds of microcontroller applica-
tions.

Private Name Regions

Private name regions are used when you wish to link together a group
of files and expose only some to the symbol names that they define.
This lets you link a larger program in groups without worrying about
names intended only for local usage in one group colliding with identi-
cal names intended to be local to another group. Private name regions
let you keep names truly local, so the problem of name space pollution
is much more manageable.

© 2003 COSMIC Software Using The Linker 291

n Special Topics

An explicit use for private nameregionsin an MC68HC11 environment
isin building a paged program with duplication of the most used library
functions in each page, in order to avoid extra page commutation. To
avoid complaints when multiple copies of the same file redefine sym-
bols, each such contribution is placed in a private name region accessi-
ble only to other filesin the same page.

The basic sequence of commands for each island looks like:

+new <public Ffiles> +pri <private libraries>

Any symbols defined in <public files> are known outside this private
name region. Any symbols defined in <private libraries> are known
only within this region; hence they may safely be redefined as private to
other regions as well.

NOTE

All symbols defined in a private region are local symbols and will not
appear in the symbol table of the output file.

Renaming Symbols
At times it may be desirable to provide a symbol with an alias and to

hide the original name (i.e., to prevent its definition from being used by
the linker as a DEF which satisfies REFs to that symbol name). As an
example, suppose that the function func in the C library provided with
the compiler does not do everything that is desired of it for some special
application. There are three methods of handling this situation (we will
ignore the alternative of trying to live with the existing function’s defi-
ciencies).

The first method is to write anew version of the function that performs
asrequired and link it into the program being built before linking in the
libraries. Thiswill cause the new definition of func to satisfy any refer-
ences to that function, so the linker does not include the version from
the library because it is not needed. This method has two major draw-
backs: first, a new function must be written and debugged to provide
something which basically already exists; second, the details of exactly
what the function must do and how it must do it may not be available,
thus preventing a proper implementation of the function.

292 Using The Linker © 2003 COSMIC Software

Special Topics

The second approach is to write a new function, say my_func, which
does the extra processing required and then calls the standard function
func. This approach will generally work, unless the origina function
func is called by other functions in the libraries. In that case, the extra
function behavior cannot occur when func is called from library func-
tions, sinceitisactually my_func that performsit.

The third approach is to use the aliasing capabilities of the linker. Like
the second method, a new function will be written which performs the
new behavior and then callsthe old function. Thetwist isto give the old
function a new name and hide its old name. Then the new function is
given the old function’s name and, when it calls the old function, it uses
the new name, or alias, for that function. The following linker script
provides a specific example of this technique for the function func:

line 1 +seg .text -b 0x1000
line 2 +seg .data -b0

line 3 +new

line 4 Crts.xx

line 5 +def _oldfunc=_func
line 6 +pri func.o

line 7 +new

line 8 prog.o newfunc.o
line 9 <libraries>

NOTE

The function name func as referenced here is the name as seen by the C
programmer. The name which is used in the linker for purposes of alias-
ing is the name as seen at the object module level. For more information
on this transformation, see the section “ Interfacing C to Assembly Lan-
guage” in Chapter 3.

The main thing to note here is that func.o and new_func.o both define a
(different) function named func. The second function func defined in
newfunc.o calls the old func function by its aias oldfunc.

Name regions provide limited scope control for symbol names. The
+new command starts a new name region, which will be in effect until
the next +new command. Within a region there are public and private
name spaces. These are entered by the +pub and +pri commands; by
default, +new starts in the public name space.

© 2003 COSMIC Software Using The Linker 293

n Special Topics

Lines 1,2 are the basic linker commands for setting up a separate 1/D
program. Note that there may be other options required here, either by
the system itself or by the user.

Line 3 starts anew region, initially in the public name space.
Line 4 specifies the startup code for the system being used.

Line 5 establishes the symbol _oldfunc as an alias for the symbol _func.
The symbol _oldfunc is entered in the symbol table as a public defini-
tion. The symbol _func is entered as a private reference in the current
region.

Line 6 switches to the private name space in the current region. Then
func.o islinked and provides a definition (private, of course) which sat-
isfies the referenceto _func.

Line 7 starts a new name region, which is in the public name space by
default. Now no reference to the symbol _func can reach the definition
created on Line 6. That definition can only be reached now by using the
symbol _oldfunc, which is publicly defined as an aiasfor it.

Line 8 links the user program and the module newfunc.o, which pro-
vides anew (and public) definition of _func. In this module the old ver-
sion is accessed by itsalias. This new version will satisfy al references
to_func madein prog.o and thelibraries.

Line9linksin the required libraries.

The rules governing which name space a symbol belongs to are as fol-
lows:

e Any symbol definition in the public space is public and satisfies
all outstanding and future references to that symbol.

* Any symbol definition in the private space of the current region is
private and will satisfy any private reference in the current region.

» All private definitions of a symbol must occur before a public def-
inition of that symbol. After a public definition of a symbol, any

294 Using The Linker © 2003 COSMIC Software

Special Topics

other definition of that symbol will cause a*“ multiply defined sym-
bol” error.

* Any number of private definitions are allowed, but each must be
in a separate region to prevent amultiply defined symbol error.

* Any new reference is associated with the region in which the ref-
erence is made. It can be satisfied by a private definition in that
region, or by a public definition. A previous definition of that
symbol will satisfy the reference if that definition is public, or if
the definition is private and the reference is made in the same
region as the definition.

» |If anew referenceto asymbol occurs, and that symbol still has an
outstanding unsatisfied reference made in another region, then
that symbol is marked as requiring a public definition to satisfy it.

* Any definition of asymbol must satisfy all outstanding references
to that symbol; therefore, a private definition of a symbol which
requires a public definition causes a blocked symbol reference
error.

* No symbol reference can “reach” any definition made earlier than
the most recent definition.

Absolute Symbol Tables

Absolute Symbol tables are used to export symbols from one application
to another, to share common functions for instance, or to use functions
aready built in a ROM, from an application downloaded into RAM.
The linker option -s will modify the output file in order to contain only
asymbol table, without any code, but still with an object file format, by
using the same command file used to build the application itself. All
symbols are flagged as absolute symbols. This file can be used in
another link, and will then transmit its symbol table, allowing another
application to use those symbols as externals. Note that the linker does
not produce any map even if requested, when used with the -s option.

The basic sequence of commands |ooks like:

© 2003 COSMIC Software Using The Linker 295

n Special Topics

clnk -o appli.-h11 -m appli.map appli.lkf
clnk -o appli.sym -s appli.lkf

The first link builds the application itself using the appli.lkf command
file. The second link uses the same command file and creates an object
file containing only an absolute symbol table. Thisfile can then be used
as an input object file in any other link command file.

296 Using The Linker © 2003 COSMIC Software

Description of The Map File

Description of The Map File

The linker can output a map file by using the -m option. The map file
contains 4 sections; the Segment section, the Modul es section, the Sack
Usage section and the Symbol's section.

Segment Describe the different segments which compose the appli-
cation, specifying for each of them: the start address (in
hexa), the end address (in hexa), the length (in decimal),
and the name of the segment. Note that the end value isthe
address of the byte following the last one of the segment,
meaning that an empty segment will have the same start
and end addresses. If a segment is initidized, it is dis-
played twice, the first time with its final address, the sec-
ond time with the address of the image copy.

Modules List al the modules which compose the application, giving
for each the description of all the defined sections with the
same format as in the Segment section. If an object has
been assembled with the -pl option, local symbols are dis-
played just after the module description.

Stack Usage Describe the amount of memory needed for the stack.
When using a stack model, each function of the applica-
tion islisted by its name, followed by a ‘>’ character indi-
cating that this function is not called by any other one (the
main function, interrupt functions, task entries...). The first
number is the total size of the stack used by the function
including al the internal calls. The second number
between braces shows the stack need for that function
alone. The entry may be flagged by the keyword “Recur -
sive’” meaning that this function is itself recursive or is
calling directly or indirectly a recursive function, and that
the total stack space displayed is not accurate. The linker
may detect potential but not actual recursive functions
when such functions are called by pointer. When using a
memory model each function using space in the ssimulated
stack is listed by its name followed by the address range of
its local area, and followed by two numbers between
braces. The first one indicates how many bytes are used for

© 2003 COSMIC Software Using The Linker 297

n Return Value

Symbols

locals and the second one indicates how many bytes are
used for arguments. Functions localy redirected to the
physical stack are also displayed with their stack usage.
The linker displays at the end of the list a total stack size
assuming interrupt functions cannot be themselves inter-
rupted. Interrupt frames and machine library cals are
properly counted.

List al the symbols defined in the application specifying
for each its name, its value, the section where it is defined,
and the modules where it is used. If the target processor
supports bank switching, addresses are displayed aslogical
addresses by default. Physical addresses can be displayed
by specifying the -p option on the linker command line.

Return Value

clnk returns success if no error messages are printed to STDOUT; that
is, if no undefined symbols remain and if all reads and writes succeed.
Otherwiseit returnsfailure.

Linker Command Line Examples

This section shows you how to use the linker to perform some basic

operations.

A linker command file consists of linker options, input and output file,
and libraries. The options and files are read from a command file by the
linker. For example, to create an MC68HC11 file from file.o you can
type at the system prompt:

clnk -o myapp.hll myapp.lkf

where myapp.lkf contains:

+seg .text -b0Ox1000 -n .text # start eprom address

+seg .const -a .text
+seg .data -b0x100
\cx32\lib\crts.hll
filel.o file2.0

constants follow program
start data address
startup object file

#
#
#
input object files

\cx32\lib\libi.h11l # C library

298 Using The Linker

© 2003 COSMIC Software

Linker Command Line Examples

\cx32\lib\libm_h11 # machine library
+def __ memory=@.bss # symbol used by startup

The following link command file is an example for an application that
does not use floating point data types and does not require automatic
initialization.

demo.lkf: link command WITHOUT automatic init

+seg -text -b 0xe000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address

+seg .share -b0x80 -mOx80 -is# shared segment

\cx32\lib\crts.hl1l startup with NO-INIT
acia.o main program
modulel.o module program

\cx32\lib\libi.h11
\cx32\lib\libm.h11
+seg .const -bOxffd6
vector.o

+def __memory=@.bss
+def __ stack=0x00ff

C lib.

machine lib.

vectors eprom address

reset & interrupt vectors
symbol used by library
stack pointer initial value

HoH R HHR

The following link command file is an example for an application that
uses single precision floating point data types and utilizes automatic
datainitialization.

demo.lkf: link command WITH automatic init

+seg -text -b 0xe000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address

+seg -.share -bOx80 -mOx80 -is # shared segment

\cx32\lib\crtsi.hll startup with auto-init
acia.o main program
modulel.o module program

\cx32\lib\libf.h11
\cx32lib\libi.h11
\cx32\lib\libm.h11
+seg .const -bOxffd6
vector.o

+def _ _memory=@.bss
+def __ stack=0x001ff

single prec.

integer lib.

machine lib.

vectors eprom address

reset & interrupt vectors
end of bss segment

stack pointer initial value

HoH R E R W HH R

© 2003 COSMIC Software Using The Linker 299

CHAPTER

5

Debugging Support

This chapter describes the debugging support available with the cross
compiler targeting the MC68HC11. There are two levels of debugging
support available, so you can use either the COSMIC's Zap C source
level cross debugger or your own debugger or in-circuit emulator to
debug your application. This chapter includes the following sections:

» Generating Debugging Information

» Generating Line Number Information
» Generating Data Object Information
e Thecprd Utility

* Theclst utility

© 2003 COSMIC Software Debugging Support 301

Generating Debugging Information

Generating Debugging Information

The compiler generates debugging information in response to command
line options you pass to the compiler as described below. The compiler
can generate the following debugging information:

1 line number information that allows COSMIC's C source level
debugger or another debugger or emulator to locate the address of the
code that a particular C source line (or set of lines) generates. You
may put line number information into the object module in either of
the two formats, or you can generate both line number information
and information about program data and function arguments, as
described below.

2 information about the name, type, storage class and address (abso-
lute or relative to a stack offset) of program static data objects, func-
tion arguments, and automatic data objects that functions declare.
Information about what source files produced which relocatable or
executable files. This information may be localized by address
(where the output file resides in memory). It may be written to afile,
sorted by address or alphabetical order, or it may be output to a
printer in paginated or unpaginated format.

Generating Line Number Information
The compiler puts line number information into a special debug symbol

table. The debug symbol table is part of the relocatable object file pro-
duced by a compilation. It is also part of the output of the clnk linker.
You can therefore obtain line number information about a singlefile, or
about all the files making up an executable program. However, the
compiler can produce line number information only for files that are
fewer than 65,535 lines in length.

Generating Data Object Information
The +debug option directs the compiler to generate information about

data objects and function arguments and return types. The debugging
information the compiler generates is the information used by the
COSMIC’s C source level cross debugger or another debugger or emu-
lator. The information produced about data objects includes their name,
scope, type and address. The address can be either absolute or relative
to a stack offset.

302 Debugging Support © 2003 COSMIC Software

Generating Debugging Information

As with line number information alone, you can generate debugging
information about a single file or about al the files making up an exe-
cutable program.

cprd may be used to extract the debugging information from files com-
piled with the +debug option, as described below.

© 2003 COMIC Software Debugging Support 303

The cprd Utility

The cprd Utility

cprd extracts information about functions and data objects from an
object module or executable image that has been compiled with the
+debug option. cprd extracts and prints information on the name, type,
storage class and address (absolute or offset) of program static data
objects, function arguments, and automatic data objects that functions
declare. For automatic data, the address provided is an offset from the
frame pointer. For function arguments, the address provided is an offset
from the stack pointer.

Command Line Options
cprd accepts the following command line options, each of which is
described in detail below:

cprd

[options] file

-fc* select function name
-Fl* select file name

-0* output file name

-r recurse structure fields
-s display object size

where <file> is an object file compiled from C source with the com-
piler command line option +debug set.

-fc*

-fI*

-0*

304 Debugging Support

print debugging information only about the function *. By
default, cprd prints debugging information on all functions
in <file>. Note that information about global data objects
is aways displayed when available.

print debugging information only about the file *. By
default, cprd prints debugging information on all C source
files.

print debugging information to file *. Debugging informa-
tion is written to your terminal screen by default.

Display structure fields with their offset.

Display object sizein bytes.

© 2003 COSMIC Software

The cprd Utility

By default, cprd prints debugging information about al functions and
global dataobjectsin <file>.

Examples
The following example show sample output generated by running the
cprd utility on an object file created by compiling the program acia.c
with the compiler option +debug set.

cprd acia.hll

Information extracted from acia.hll
source file acia.c:

(no globals)

unsigned char getch() lines 25 to 35 at 0xf016-0xf030
auto unsigned char ¢ at -1 from frame pointer

void outch() lines 39 to 44 at Oxf031-0xf03d
argument unsigned char c at 3 from frame pointer

void recept() lines 50 to 56 at Oxf03e-0xf113
(no locals)

void main() lines 62 to 71 at 0xf114-0xf06b
(no locals)

© 2003 COMIC Software Debugging Support 305

The clst utility

The clst utility

The clst utility takes relocatable or executable files as arguments, and
creates listings showing the C source files that were compiled or linked
to obtain those relocatable or executable files. It is a convenient utility
for finding where the source statements are implemented.

To use clst efficiently, its argument files must have been compiled with
the +debug option.

clst can be instructed to limit its display to files occupying memory in a
particular range of addresses, facilitating debugging by excluding extra-
neous data. clst will display the entire content of any files located
between the endpoints of its specified address range.

Command Line Options
clst accepts the following command line options, each of which is

described in detail below:

clst [options> fTile
-a list file alphabetically
-f*> process selected file
-i*> source file
-1# page length
-0* output file name
-p suppress pagination
-r* specify a line range #:#

306 Debugging Support

when set, cause clst to list files in alphabetical order. The
default isthat they are listed by increasing addresses.

specify * as the file to be processed. Default is to process
all the files of the application. Up to 10 files can be speci-
fied.

read string * to locate the source file in a specific directory.
Source files will first be searched for in the current direc-
tory, then in the specified directories in the order they were
given to clst. You can specify up to 20 different paths Each
path is a directory name, not terminated by any directory
separator character.

© 2003 COSMIC Software

The clst utility

-l# when paginating output, make the listings # lines long. By
default, listings are paginated at 66 lines per page.

-0* redirect output from clst to file *. You can achieve a simi-
lar effect by redirecting output in the command line.

‘ clst -o acia.lst acia.hll |

is equivalent to:

‘ clst acia.hll >acia.lst |

-p suppress pagination. No page breaks will be output.

-r## where #:# is a range specification. It must be of the form
<number>:<number>. When this flag is specified, only
those source files occupying memory in the specified
range will belisted. If part of afile occupies memory inthe
specified range, that file will be listed in its entirety. The
followingisavalid use of -r:

-r 0xe000:0xe200

© 2003 COMIC Software Debugging Support 307

CHAPTER

8

Programming Support

This chapter describes each of the programming support utilities pack-
aged with the C cross compiler targeting the MC68HC11. The follow-
ing utilities are available:

cbank fill page window

chex translate object module format
clabs generate absolute listings

clib build and maintains libraries
cobj examine objects modules
cv695 generate IEEE695 format

The assembler is described in Chapter 5, “Using The Assembler”. The
linker is described in Chapter 6, “Using The Linker”. Support for
debugging is described in Chapter 7, “ Debugging Support”.

The description of each utility tells you what tasks it can perform, the
command line options it accepts, and how you use it to perform some
commonly required operations. At the end of the chapter are a series of
examples that show you how to combine the programming support util-
ities to perform more complex operations.

© 2003 COSMIC Software Programming Support 309

H The cbank Utility

The cbank Utility

You use the chank utility to optimize the bank filling with object files.
chank is given alist of object files and a bank size. It reorganizes the
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order. If the input file also contains bank start
addresses (using the linker syntax), segment opening directives will be
also output at the proper place with the specified information. Other-
wise the object file list is supposed to be used in conjunction with the
-w option of the linker allowing an automatic bank filling. In any cases,
the file produced by the cbank utility can be directly inserted in the
linker command file by a +inc directive.

Command Line Options
chank accepts the following command line options, each of which is
described in detail below:

cbank [options] file

—m# maximum available banks
-n* name of segment to pack
-0* output file name

—WHH bank size

-m# fill amaximum of # banks. If cbank needs more banks than
the specified number, it will report an error message. By
default, chank fills as many banks as necessary.

-n* sort sections whose name is equal to the string *. By
default, chbank sorts .text sections.

-0* write result to file*. The default is STDOUT.
-WHH set the bank size to ##.
Return Satus

chank returns success if no error messages are printed. Otherwise it
returns failure.

310 Programming Support © 2003 COSMIC Software

The cbank Utility

Examples
The following command:

cbank -o bk list -w 0x1000 obj list

will generate bk_list as the result file, with a page window of size
0x1000 from the given list obj_ list which contains:

filel.
file2.
file3.
filed.

O O 0 O

The result will be:

--— bank 1 --- # (3876/4096)
filel.o

file3.0

---— bank 2 --- # (3900/4096)
file2.0

--- bank 3 --- # (474/4096)
filed.o

Thefirst value is the space used in the bank, and the second value isthe
bank size.

Bank start addresses can be included into the input file, such as:

-b0x10000 -0 0x8000 -n bankl
-b0x18000 -0 0x8000 -n bank?2
-b0x20000 -0 0x8000 -n bank3
filel.o
file2.0
file3.o
filed.o

The result will be:

+seg .text -b0x10000 -00x8000 -n bankl # (3876/4096)
filel.o

file3.o

+seg .text -b0x18000 -00x8000 -n bank2 # (3900/4096)
file2.0

+seg .text -b0x20000 -00x8000 -n bank3 # (474/4096)

filed.o

© 2003 COSMIC Software Programming Support 311

E The chex Utility

The chex Utility

You use the chex utility to translate executable images produced by
clnk to one of several hexadecimal interchange formats. These formats
are: Motorola S-record format, and Intel standard hex format. You can
also use chex to override text and data biases in an executable image or

to output only a portion of the executable.

The executable image is read from the input file <file>.

Command Line Options

chex accepts the following command line options, each of which is

described in detail below:

chex [options] file

-a#t# absolute file start address
-b## address bias
-e## entry point address
-2 output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-0* output file name
-p use paged address format
-pl# page number for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-x*> exclude named segments

-attt the argument file is a considered as a pure binary file and

is the output address of the first byte.
-b## substract ## to any address before output.
ettt define ## as the entry point address encoded in the dedi-

cated record of the output format, if available.

-f? define output file format. Valid options are:

312 Programming Support

© 2003 COSMIC Software

The chex Utility

i Intel hex format

Motorola S19 format

m
2 Motorola S2 format
3

Motorola S3 format

Default is to produced Motorola S-Records (-fm). Any
other letter will select the default format.

-h do not output the header sequence if such a sequence exists
for the selected format.

+h* insert * in the header sequence if such a sequence existsfor
the selected format.

-m# output # maximum data bytes per line. Default is to output

32 bytes per line.

-n*> output only segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will all be produced. This option is used in
combination with the -n option of the linker.

-0* write output module to file *. The default is STDOUT.

-p output addresses of banked segments using a paged format
<page_number><logical address>, instead of the
default format <physical>.

-pl# specify the page value of the segment localized between

0x8000 and 0xc000 when using a linear non-banked
application. This option enforces a paged format for this
segment.

-pn behaves as -p but only when logical address is inside the
banked area. This option has to be selected when produc-
ing an hex file for the Noral debugger.

© 2003 COSMIC Software Programming Support 313

E The chex Utility

-Pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped. This option hasto be selectd
when producing an hex file for Promic tools.

-S sort the output addresses in increasing order.

-X* > do not output segments whose name is equal to the string
*, Up to twenty different names may be specified on the
command line. If there are several segments with the same
name, they will not al be output.

Return Satus
chex returns success if no error messages are printed; that is, if all
records are valid and all reads and writes succeed. Otherwise it returns
failure.

Examples
The file hello.c, consisting of:

‘ char *p = {*hello world”}; ‘

when compiled produces the following the following Motorola
Srecord format:

‘ chex hello.o ‘

SO0A000068656C6C6F2EG6F44
$1110000020068656C6C6F20776F726C640090
S9030000FC

and the following Intel standard hex format:

chex -fi hello.o

-0EO00000020068656C6C6F20776F726C640094
-00000001FF

314 Programming Support © 2003 COSMIC Software

The clabs Utility

The clabs Utility

clabs processes assembler listing files with the associated executable
file to produce listing with updated code and address values.

clabs decodes an executable file to retrieve the list of all the fileswhich
have been used to create the executable. For each of these files, clabs
looks for amatching listing file produced by the compiler (“.Is” file). If
such afile exists, clabs creates a new listing file (“.1a” file) with abso-
lute addresses and code, extracted from the executable file.

To be able to produce any results, the compiler must have been used
with the ‘-I" option.

Command Line Options
clabs accepts the following command line options, each of which is

described in detail below.

clabs [options] File

-a process also library files
-cl* listings files
-1 restrict to local directory
-p use paged address format
-pn use paged address in bank only
-pp use paged address with mapping
-r* relocatable listing suffix
-s* absolute listing suffix
-V echo processed file names

-a process also files located in libraries. Default is to process

only al the files of the application.

-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-l process files in the current directory only. Default is to
process al the files of the application.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

© 2003 COSMIC Software Programming Support 315

H The clabs Utility

-pn behaves as -p but only when logical address is inside the
banked area.
-pPp behaves as -p but uses paged addresses for all banked seg-

ments, mapped or unmapped.

-r* specify the input suffix, including or not the dot *.’ charac-
ter. Default is”.Is”

-s* specify the output suffix, including or not the dot ‘.’ char-
acter. Defaultis”.la”

-V be verbose. The name of each module of the application is
output to STDOUT.

<file> specifies one file, which must be in executable format.

Return Satus
clabs returns success if no error messages are printed; that is, if all reads
and writes succeed. An error message is output if no relocatable listing
files are found. Otherwise it returnsfailure.

Examples
The following command line:

clabs -v acia.hll

will output:
crts.lIs

acia.ls
vector.ls

and creates the following files:

crts.la
acia.la
vector.la

The following command line:

316 Programming Support © 2003 COSMIC Software

The clabs Utility

clabs -r.Ist acia.hll

will look for files with the suffix “.Ist”:

The following command line:

clabs -s.Ix acia.hll

will generate:
crts.Ix

acia. Ix
vector. Ix

© 2003 COSMIC Software Programming Support 317

E The clib Utility

The clib Utility

clib builds and maintains object module libraries. clib can also be used
to collect arbitrary filesin one place. <library> isthe name of an exist-
ing library file or, in the case of replace or create operations, the name
of the library to be constructed.

Command Line Options
clib accepts the following command line options, each of which is
described in detail below:

clib

[options] <library> <files>

-a accept absolute symbols

-C create a new library

-d delete modules from library
-i* object list filename

-1 load all library at link

-r replace modules in library
-s list symbols in library

-t list files in library

-V be verbose

-X extract modules from library

I*

include absolute symbolsin the library symbol table.

create alibrary containing <files>. Any existing <library>
of the same name is removed before the new one is cre-
ated.

delete from the library the zero or more filesin <files>.

take object filesfrom alist *. You can put several files per
line or put one file per line. Each lines can include com-
ments. They must be prefixed by the ‘# character. If the
command line contains <files>, then <files> will be also
added to the library.

when alibrary is built with this flag set, al the modules of
the library will be loaded at link time. By default, the
linker only loads modul es necessary for the application.

318 Programming Support © 2003 COSMIC Software

Theclib Utility

-r in an existing library, replace the zero or more files in
<files>. If no library <library> exists, create a library
containing <files>. The files in <files> not present in the
library are added to it.

-S list the symbols defined in the library with the module
name to which they belong.

-t list thefilesin the library.

-V be verbose

-X extract the files in <files> that are present in the library

into discrete files with the same names. If no <files> are
specified, al filesin the library are extracted.

At most one of the options -[c r t X] may be specified at the same time.
If none of these is specified, the -t option is assumed.

Return Satus
clib returns success if no problems are encountered. Otherwise it
returns failure. After most failures, an error message is printed to
STDERR and the library file is not modified. Output from the -t, -s
options, and verbose remarks, are written to STDOUT.

Examples
To build alibrary and check its contents:

clib -c libc one.o two.o three.o
clib -t libc

will output:
one.o
two.o

three.o

To build alibrary from alist file:

clib -ci list libc six.o seven.o

© 2003 COSMIC Software Programming Support 319

E The clib Utility

where list contains;

files for the libc library
one.o

two.o

three.o

four.o

five.o

320 Programming Support © 2003 COSMIC Software

The cobj Utility

The cobj Utility

You use cobj to inspect rel ocatable object files or executable. Such files
may have been output by the assembler or by the linker. cobj can be
used to check the size and configuration of relocatable object files or to
output information from their symbol tables.

Command Line Options
cobj accepts the following options, each of which is described in detail

bel ow.
cobj [options] file

- output data flows
-h output header
-n output sections
-0* output file name
-r output relocation flows
-s output symbol table
-V display file addresses
-X output debug symbols

<file> gpecifies a file, which must be in relocatable format or executa-

ble format.

-d output in hexadecimal the data part of each section.

-h display al the fields of the object file header.

-Nn display the name, size and attribute of each section.

-0* write output module to file *. The default is STDOUT.

-r output in symbolic form the relocation part of each section.
-S display the symboal table.

-V display seek addresses inside the object file.

-X display the debug symbol table.

If none of these optionsis specified, the default is-hns.

© 2003 COSMIC Software Programming Support 321

H The cobj Utility

Return Satus

cobj returns success if no diagnostics are produced (i.e. if al reads are
successful and all file formats are valid).

Examples

For example, to get the symbol table:

cobj -s acia.o

symbols:

_main: 0000003e
_outch: 0000001b
_buffer: 00000000
_ptecr: 00000000
_getch: 00000000
_ptlec: 00000002
_recept: 00000028

section
section
section
section
section
section
section

.text defined public
-text defined public
-bss defined public
-bsct defined public zpage
-text defined public
_bsct defined public zpage
.text defined public

The information for each symbol is: name, address, section to which it

belongs and attribute.

322 Programming Support

© 2003 COSMIC Software

The cv695 Utility

The cv695 Utility

cv695 isthe utility used to convert a file produced by the linker into an
|EEEG95 format file.

Command Line Options
cv695 accepts the following options, each of which is described in
detail below.

cv695 [options] File

+V4 do not offset locals
+bit patch bit variables into chars
-d display usage info

+dpage file uses data paging (HC12 only)
-mod? select compiler model

+old produce old format

-0* output file name

+page# define pagination (HC12 only)

-rb reverse bitfield (L to R)

-V be verbose

<file> specifies afile, which must be in executable format.

-V4 output information as per as cv695 converter V4.x version.
This flag is provided for compatibility with older version
of cv695 version. DO NOT USE UNLESS SPECIFI-
CALLY INSTRUCTION TO DO SO.

+bit patch bit variables into chars because |EEE695 format
does not handle bit variables.

-dpage output banked data addresses. DO NOT USE THIS
OPTION ON NON BANKED DATA APPLICATION.
THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE MC68HC12.

-d dump to the screen the interface information such as:
frame coding, register coding, e.g. al the processor spe-
cific coding for IEEE (note: some of these codings have
been chosen by COSMIC because no specifications exist
for them in the current published standard).

© 2003 COSMIC Software Programming Support 323

E The cv695 Utility

THIS INFORMATION IS ONLY RELEVANT FOR
WRITING A READER OF THE PRODUCED I|EEE
FORMAT.

-mod? where ? is a character used to specify the compilation
model selected for the file to be converted.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC16.

This flag mimics the flag used with C. Acceptable values
are:

¢ | for compact model

s for short model

t for tiny model

| for large model

+old output old format for MRI.

-0* where * is a filename. * is used to specify the output file
for cv695. By default, if -0 is not specified, cv695 send its
output to the file whose name is obtained from the input
file by replacing the filename extension with “.695”.

+page# output addresses in paged mode where # specifies the page
type:

0 | for no paging.
1 | for pages with PHYSICAL ADDRESSES

2 |for pages with banked addresses
<page><offset_in_page>

By default linear physical addresses are output.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC12.

324 Programming Support © 2003 COSMIC Software

The cv695 Utility

-rb reverse bitfield from left to right.
-V select verbose mode. cv695 will display information about
its activity.

Return Satus
cv695 returns success if no problems are encountered. Otherwise it

returns failure.

Examples
Under MS/DOS, the command could be:

cv695 C:\test\basic.hll

and will produce: C:\test\basic.695

and the following command:

cv695 -0 File C:\test\basic.hll

will produce: file

Under UNIX, the command could be:

cv695 /test/basic.hll

and will produce: test/basic.695

© 2003 COSMIC Software Programming Support 325

APPENDI X

A

Compiler Error
M essages

This appendix lists the error messages that the compiler may generatein
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

e Parser (cp6811) Error Messages

» Code Generator (cg6811) Error Messages
* Assembler (ca6811) Error Messages

e Linker (clnk) Error Messages

© 2003 COSMIC Software Compiler Error Messages 327

Parser (cp6811) Error Messages

Parser (cp6811) Error Messages

<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - afunction or avariableis never defined
FlexL M <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asmis larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a# operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified
bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a## operator in
a#define macro is missing

bad #asm directive - a#tasm directive is not entered at avalid declara-
tion or instruction boundary

bad #define syntax - a#define is not followed by an identifier
bad #€lif expression - a#€lif is not followed by a constant expression
bad #else - a#else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a#endasm directive is not closing a previous
#asm directive

328 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

bad #endif - a#endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name
bad #ifndef syntax - extra characters are found after the symbol name
bad #include syntax - extra characters are found after the file name

bad #pragma section directive - syntax for the #pragma section direc-
tive isincorrect

bad #pragma space directive - syntax for the #pragma space directive
isincorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - thefirst argument passed to _asmis miss-
ing or is not a character string

bad alias expression - aias definition is not avalid expression

bad alias value - alias definition is not a constant expression

bad bit number - abit number is not a constant between 0 and 7

bad character <character> - <character> isnot part of alegal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by aright parenthesis

bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments

© 2003 COSMIC Software Compiler Error Messages 329

Parser (cp6811) Error Messages

bad macro argument - a parameter in a#define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad return type for inline function - inline function must be declared
with void return type

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol defintion - the syntax of a symbol defined by the -d option
on the command lineis not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing
can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a#undef has been attempted on a prede-
fined macro

compare out of range - acomparison is detected as beeing always true
or dways false (+strict)

330 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

const assignment - a const object is specified as left operand of an
assignment operator

constant assignement in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - adefault label has been specified more than oncein
aswitch statement

embedded usage of tag name <name> - a structure/union definition
contains areference to itself.

enum size unknow - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in area constant is
too large for the target encoding

float valuetoo largefor integer cast - afloat constant istoo large to be
casted in an integer

hexadecimal constant too large - an hexadecimal constant istoo large
to be represented on an integer

illegal storage class - storage classis not legal in this context
illegal type specification - type specification is not recognizable

illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)

© 2003 COSMIC Software Compiler Error Messages 331

Parser (cp6811) Error Messages

implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structures must be
compatible for assignment

incomplete #elif expression - a #dif is followed by an incomplete
expression

332 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

incomplete #if expression - a #if isfollowed by an incomplete expres-
sion

incomplete type - structure typeis not followed by atag or definition

integer constant too large - adecimal constant istoo large to be repre-
sented on an integer

invalid case - a case label has been specified outside of a switch state-
ment

invalid default - a default 1abel has been specified outside of a switch
Statement

invalid ? test expression - the first expression of a ternary operator
(?:) isnot atestable expression

invalid address operand - the “address of” operator has been applied
to aregister variable or an rvalue expression

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object

invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with adimension
which is not a constant expression

invalid binary number - the syntax for abinary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initiliazing a bit variable must be
scalar

invalid bitfield size - abitfield has been declared with asize larger than
itstypesize

© 2003 COSMIC Software Compiler Error Messages 333

Parser (cp6811) Error Messages

invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value

invalid continue - a continue statement may be used only in while, for,
or do statements

invalid do test type - the expression of ado ... while() instruction is not
atestable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression

invalid function member - afunction has been declared within a struc-
ture or an union

334 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to afunction

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - theinitialization of alocal object isincom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference

invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted

invalid shift count type - the right expression of a shift operator is not
an integer

© 2003 COSMIC Software Compiler Error Messages 335

Parser (cp6811) Error Messages

invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid storage class - storage classis not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator

invalid switch test type - the expression of aswitch () instruction must
be of integer type

invalid typedef usage - atypedef identifier isused in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid whiletest type - the expression of awhile () instruction isnot a
testable expression

missing ## argument in macro <name> - an argument of a## opera-
tor in a#define macro ismissing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a‘(* does not haveabalancing ‘)’ ina
defined operator

missing ; in argument declar ation - the declaration of afunction argu-
ment does not end with *;’

missing ; in local declaration - the declaration of alocal variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with *;’

missing ? test expression - the test expression is missing in a ternary
operator (?:)

missing _asm() argument - the _asm function needs at least one argu-
ment

336 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

missing argument - the number of argumentsin the actual function call
isless than that of its prototype declaration

missing argument for macro <name> - amacro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument ismissing in apro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - ado ... while () instruction has been speci-
fied with an empty while expression

missing enumer ation member - amember of an enumeration is not an
identifier

missing explicit return - areturn statement is not ending a non-void
function (+strict)

missing exponent in real - afloating point constant has an empty expo-
nent after the’e or 'E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a#include directive is used, but nofile
name s present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=" character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=" character not followed by an expression

missing local name - alocal variable has been declared without a name

© 2003 COSMIC Software Compiler Error Messages 337

Parser (cp6811) Error Messages

missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - asimple return statement is used in anon-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a‘while’ is expected and not found

missing while test expression - an expression in awhile instruction is
needed, but none is present

missing : - a‘:’ isexpected and not found
missing ; - a‘;’ isexpected and not found
missing (- a‘(’ isexpected and not found
missing) - a‘)’ is expected and not found
missing] - a‘']’ is expected and not found
missing { - a‘{’ is expected and not found

missing } - a‘'}’ isexpected and not found

338 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

missing } in enum definition - an enumeration list does not end with a
‘}' character

missing } in struct/union definition - a structure or union member list
doesnot end witha '}’ character

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is aready
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is aready declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - atypedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an aready
declared object

redefined label <name> - alabel is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - atag is specified more than once in a given
scope

repeated type specification - the same type modifier occurs more than
once in atype specification

scalar typerequired - type must be integer, floating, or pointer

© 2003 COSMIC Software Compiler Error Messages 339

Parser (cp6811) Error Messages

size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
aready specified modifier

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read
token overflow - an expression istoo complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initiaization is completed for a given object
beforeinitializer list is exhausted

too many spaces modifiers - too many different namesfor ‘@' modifi-
ersare used

truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

unbalanced ’ - acharacter constant does not end with a simple quote
unbalanced “ - a string constant does not end with a double quote
<name> undefined - an undeclared identifier appearsin an expression
undefined label <name> - alabel is never defined

undefined struct/union - a structure or union is used and is never
defined

340 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6811) Error Messages

unexpected end of file - last declaration isincomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

zero divide - adivide by zero was detected

zero modulus - amodulus by zero was detected

© 2003 COSMIC Software Compiler Error Messages 341

Code Generator (cg6811) Error Messages

Code Generator (cg6811) Error Messages

bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

invalid indirect call - afunction has been called through a pointer with
more than one char or int argument, or is returning a structure.

redefined space - the version of cp6811 you used to compile your pro-
gram isincompatible with cg6811.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file
PANIC ! bad output file - cannot create output file
PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COsSMIC.

342 Compiler Error Messages © 2003 COSMIC Software

Assembler (ca6811) Error Messages

Assembler (ca6811) Error Messages

The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving afile name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant istoo long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment
bad constant - a constant usesillegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators

© 2003 COSMIC Software Compiler Error Messages 343

Assembler (ca6811) Error Messages

bad string constant - a character constant does not end with asingle or
double quote

bad symbol name: <name> - an expected symbol is not an identifier
can't create <name> - the file <name> cannot be opened for writing
can't open <name> - the file <name> cannot be opened for reading
can't open sour ce <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset
illegal size - the size of ads directiveis negative or zero

missing label - alabel must be specified for this directive

missing oper and - operand is expected for thisinstruction

missing register - aregister is expected for thisinstruction

missing string - a character string is expected for this directive
relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared
syntax error - an unexpected identifier or operator has been found

too many arguments - a macro has been invoked with more than 9
arguments

344 Compiler Error Messages © 2003 COSMIC Software

Assembler (ca6811) Error Messages

too many back tokens - an expression istoo complex to be evaluated
unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - adivide by zero has been detected

© 2003 COSMIC Software Compiler Error Messages 345

Linker (clnk) Error Messages

Linker (cInk) Error Messages

-a not allowed with -b or -o - the after option cannot be specified if
any start addressis specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a+def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected rel ocation informa-
tion.

bad section hamein +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

can't create map file <file> - map file cannot be created.
can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.

file already linked - an input file has aready been processed by the
linker.

function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.

346 Compiler Error Messages © 2003 COSMIC Software

Linker (clnk) Error Messages

function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.
incomplete +seg directive - the +seg directive syntax is not correct.
incomplete +spc directive - the +spc d