
Copyright © COSMIC Software 1995, 2003

OSMIC
SoftwareC Version 4.1

C Cross Compiler User’s Guide
for Motorola MC68HC11
All Trademarks are the property of their respective owners

Table of Contents
Preface
Organization of this Manual ... 1

Chapter 1
Introduction

Introduction... 4
Document Conventions... 4

Typewriter font ... 4
Italics .. 5
[Brackets] ... 5
Conventions.. 6
Command Line ... 6
Flags ... 6

Compiler Architecture .. 8
Predefined Symbol.. 9
Linking.. 9
Programming Support Utilities... 9
Listings.. 10
Optimizations.. 10
Support for Bank Switching ... 12
Support for ROMable Code.. 12
Support for eeprom ... 13

Chapter 2
Tutorial Introduction

Acia.c, Example file.. 16
Default Compiler Operation ... 17

Compiling and Linking... 18
Step 1: Compiling... 18
Step 2: Assembling... 19
Step 3: Linking ... 20
Step 4: Generating S-Records file 22

Linking Your Application... 23
Generating Automatic Data Initialization................................. 24
Specifying Command Line Options ... 26

Chapter 3
Programming Environments

Introduction... 30
Modifying the Runtime Startup .. 31
(i)

(ii)
Description of Runtime Startup Code 31
Initializing data in RAM... 33
The const and volatile Type Qualifiers..................................... 35
Performing Input/Output in C... 36
Placing Data Objects in The Bss Section 37
Placing Data Objects in The Zero Page Section....................... 37

Setting Zero Page Size ... 38
Redefining Sections.. 38
Fast Function Calls ... 40
Placing Data Objects in the EEPROM Space........................... 41
Stack Usage .. 42

Static Model 0 .. 42
Static Model 1 .. 42
Static Model 2 .. 42
Static Model 3 .. 42

Referencing Absolute Addresses.. 43
Accessing Internal Registers .. 45
Inserting Inline Assembly Instructions..................................... 46

Inlining with pragmas... 46
Inlining with _asm.. 47
Inlining Labels.. 49

Writing Interrupt Handlers ... 50
Placing Addresses in Interrupt Vectors 50
Calling a Bank Switched Function ... 51
Interfacing C to Assembly Language 54
Register Usage.. 55

Stack Model.. 55
Stack Representation .. 56
Static Models.. 57

Heap Management Control with the C Compiler 58
Modifying The Heap Location ... 60

Data Representation.. 63

Chapter 4
Using The Compiler

Invoking the Compiler.. 66
Compiler Command Line Options 67

File Naming Conventions... 72
Generating Listings... 73
Generating an Error File ... 73
Return Status... 73
Examples .. 73

C Library Support ... 74
How C Library Functions are Packaged............................. 74
Inserting Assembler Code Directly 74
Linking Libraries with Your Program................................ 74
Integer Library Functions ... 74
Common Input/Output Functions....................................... 75
Functions Implemented as Macros..................................... 75
Including Header Files ... 75

Descriptions of C Library Functions .. 77
Generate inline assembly code ... 78
Initialize K4 window registers.. 79
Abort program execution.. 80
Find absolute value... 81
Arccosine.. 82
Arcsine.. 83
Arctangent .. 84
Arctangent of y/x.. 85
Convert buffer to double .. 86
Convert buffer to integer .. 87
Convert buffer to long .. 88
Verify the recorded checksum.. 89
Allocate and clear space on the heap.................................. 90
Round to next higher integer .. 91
Cosine ... 92
Hyperbolic cosine... 93
Divide with quotient and remainder 94
Copy a buffer to an eeprom buffer 95
Erase the full eeprom space.. 96
Propagate fill character throughout eeprom buffer 97
Exit program execution .. 98
Exponential... 99
Find double absolute value... 100
Round to next lower integer ... 101
Find double modulus .. 102
Free space on the heap.. 103
Extract fraction from exponent part 104
Get character from input stream 105
Get a text line from input stream...................................... 106
Test for alphabetic or numeric character 107
Test for alphabetic character .. 108
Test for control character.. 109
Test for digit ... 110
(iii)

(iv)
Test for graphic character... 111
Test for lower-case character ... 112
Test for printing character .. 113
Test for punctuation character.. 114
Integer square root.. 115
Test for whitespace character ... 116
Test for upper-case character ... 117
Test for hexadecimal digit .. 118
Find long absolute value .. 119
Scale double exponent.. 120
Long divide with quotient and remainder 121
Natural logarithm ... 122
Common logarithm .. 123
Restore calling environment... 124
Long integer square root... 125
Allocate space on the heap ... 126
Test for maximum .. 127
Scan buffer for character .. 128
Compare two buffers for lexical order 129
Copy one buffer to another... 130
Copy one buffer to another... 131
Propagate fill character throughout buffer 132
Test for minimum... 133
Extract fraction and integer from double 134
Raise x to the y power .. 135
Output formatted arguments to stdout.............................. 136
Put a character to output stream 141
Put a text line to output stream... 142
Generate pseudo-random number 143
Reallocate space on the heap.. 144
Allocate new memory .. 145
Read formatted input .. 146
Save calling environment ... 150
Sin... 152
Hyperbolic sine... 153
Output arguments formatted to buffer.............................. 154
Real square root.. 155
Seed pseudo-random number generator 156
Read formatted input from a string 157
Concatenate strings... 158
Scan string for first occurrence of character 159
Compare two strings for lexical order.............................. 160

Copy one string to another ... 161
Find the end of a span of characters in a set..................... 162
Find length of a string... 163
Concatenate strings of length n .. 164
Compare two n length strings for lexical order 165
Copy n length string ... 166
Find occurrence in string of character in set 167
Scan string for last occurrence of character 168
Find the end of a span of characters not in set 169
Scan string for first occurrence of string 170
Convert buffer to double .. 171
Convert buffer to long .. 172
Convert buffer to unsigned long....................................... 173
Tangent ... 174
Hyperbolic tangent ... 175
Convert character to lower-case if necessary 176
Convert character to upper-case if necessary 177
Get pointer to next argument in list 178
Stop accessing values in an argument list 180
Start accessing values in an argument list 182
Output arguments formatted to stdout 184
Output arguments formatted to buffer 185

Chapter 5
Using The Assembler

Invoking ca6811 ... 188
Object File... 190
Listings.. 191
Assembly Language Syntax.. 192

Instructions ... 192
Labels ... 193
Temporary Labels... 194
Constants .. 194
Expressions... 196
Macro Instructions.. 197
Conditional Directives.. 200
Sections... 201
Includes... 202

Branch Optimization... 203
Old Syntax .. 203
C Style Directives ... 204
Directives .. 204
(v)

(vi)
Align the next instruction on a given boundary 205
Define the default base for numerical constants 206
Switch to the predefined .bsct section. 207
Turn listing of conditionally excluded code on or off...... 208
Allocate constant(s).. 209
Allocate constant block .. 210
Turn listing of debug directives on or off......................... 211
Allocate variable(s) .. 212
Conditional assembly ... 213
Conditional assembly ... 214
Stop the assembly... 215
End conditional assembly... 216
End conditional assembly... 217
End macro definition .. 218
End repeat section .. 219
Give a permanent value to a symbol 220
Assemble next byte at the next even address relative to
 the start of a section.. 221
Generate error message. ... 222
Conditional assembly ... 223
Conditional assembly ... 224
Conditional assembly ... 225
Conditional assembly ... 226
Conditional assembly ... 227
Conditional assembly ... 228
Conditional assembly ... 229
Conditional assembly ... 230
Conditional assembly ... 231
Conditional assembly ... 232
Conditional assembly ... 233
Include text from another text file.................................... 234
Turn on listing during assembly....................................... 235
Give a text equivalent to a symbol 236
Create a new local block .. 237
Define a macro ... 238
Send a message out to STDOUT...................................... 240
Terminate a macro definition ... 241
Turn on or off listing of macro expansion........................ 242
Turn off listing. .. 243
Disable pagination in the listing file 244
Creates absolute symbols ... 245
Sets the location counter to an offset from the beginning of
 a section.. 246

Start a new page in the listing file 247
Specify the number of lines per pages in the listing file .. 248
Repeat a list of lines a number of times 249
Repeat a list of lines a number of times 250
Restore saved section ... 252
Terminate a repeat definition.. 253
Save section .. 254
Define a new section .. 255
Give a resetable value to a symbol 257
Insert a number of blank lines before the next statement in
 the listing file. ... 258
Place code into a section... 259
Specify the number of spaces for a tab character in
 the listing file.. 260
Define default header ... 261
Declare a variable to be visible .. 262
Declare symbol as being defined elsewhere..................... 263

Chapter 6
Using The Linker

Introduction... 267
Overview... 268
Linker Command File Processing... 270

Inserting comments in Linker commands 271
Linker Options .. 272

Global Command Line Options.. 273
Segment Control Options ... 274
Segment Grouping.. 277
Linking Files on the Command line 278
Example.. 278
Include Option .. 278
Example.. 279
Private Region Options... 279
Symbol Definition Option .. 280
Reserve Space Option... 281

Section Relocation .. 282
Address Arithmetic... 282
Overlapping Control ... 283

Setting Bias and Offset ... 283
Setting the Bias... 283
Setting the Offset .. 283
Using Default Placement.. 284
(vii)

(viii)
Linking Objects .. 285
Linking Library Objects ... 285

Library Order.. 286
Automatic Data Initialization ... 287

Descriptor Format... 287
Checksum Computation ... 288
Shared Data Handling... 290
DEFs and REFs .. 290
Special Topics... 291

Private Name Regions .. 291
Renaming Symbols .. 292
Absolute Symbol Tables .. 295

Description of The Map File .. 297
Return Value... 298
Linker Command Line Examples... 298

Chapter 7
Debugging Support

Generating Debugging Information.. 302
Generating Line Number Information.............................. 302
Generating Data Object Information................................ 302

The cprd Utility .. 304
Command Line Options ... 304
Examples .. 305

The clst utility ... 306
Command Line Options ... 306

Chapter 8
Programming Support

The cbank Utility .. 310
Command Line Options ... 310
Return Status .. 310
Examples .. 311

The chex Utility .. 312
Command Line Options ... 312
Return Status .. 314
Examples .. 314

The clabs Utility ... 315
Command Line Options ... 315
Return Status .. 316
Examples .. 316

The clib Utility.. 318

Command Line Options ... 318
Return Status .. 319
Examples .. 319

The cobj Utility... 321
Command Line Options ... 321
Return Status .. 322
Examples .. 322

The cv695 Utility .. 323
Command Line Options ... 323
Return Status .. 325
Examples .. 325

Chapter A
Compiler Error Messages

Parser (cp6811) Error Messages ... 328
Code Generator (cg6811) Error Messages.............................. 342
Assembler (ca6811) Error Messages 343
Linker (clnk) Error Messages ... 346

Chapter B
Modifying Compiler Operation

The Configuration File.. 350
Changing the Default Options .. 351

Creating Your Own Options... 351
Example .. 352

Chapter C
MC68HC11 Machine Library

Check stack growth .. 354
Add double to double ... 355
Compare double with double.. 356
Divide double by double .. 357
Multiply double by double ... 358
Negate a double .. 359
Subtract double from double .. 360
Copy a double into a double... 361
Convert double to float ... 362
Convert double to integer ... 363
Convert double into long integer...................................... 364
Copy a double onto the stack.. 365
Eeprom char bit field update .. 366
Eeprom short bit field update ... 367
(ix)

(x)
Write a char int in eeprom.. 368
Write a double in eeprom ... 369
Write a long int in eeprom.. 370
Write a short int in eeprom... 371
Move a structure in eeprom.. 372
Function entry .. 373
Function entry .. 374
Add float to float .. 375
Compare floats ... 376
Divide float by float ... 377
Add float to float in memory.. 378
Divide float by float in memory 379
Multiply float by float in memory.................................... 380
Subtract float from float in memory................................. 381
Multiply float by float .. 382
Negate a float.. 383
Subtract float from float ... 384
Convert float into double.. 385
Convert float to integer... 386
Convert float into long integer ... 387
Quotient of integer division.. 388
Integer division by a byte constant................................... 389
Integer left shift .. 390
Remainder of integer division .. 391
Integer multiplication ... 392
Integer multiplication by a byte constant 393
Integer multiplication by 10 ... 394
Integer right shift .. 395
Convert integer into double.. 396
Convert integer into float ... 397
Perform C switch statement on char................................. 398
Perform C switch statement on long 399
Perform C switch statement ... 400
Function entry with argument in d and 2,x 401
Function entry with argument in d and 2,x 402
Function entry with argument in b 403
Function entry with argument in b 404
Function entry with argument in d 405
Function entry with argument in d 406
Long integer addition ... 407
Bitwise AND for long integers... 408
Long integer compare... 409

Quotient of long integer division...................................... 410
Long addition.. 411
Long bitwise AND ... 412
Quotient of long integer division in memory 413
Long shift left ... 414
Remainder of long integer division in memory................ 415
Long multiplication in memory.. 416
Long bitwise OR... 417
Signed long shift right .. 418
Long subtraction... 419
Quotient of unsigned long division in memory................ 420
Remainder of long unsigned integer division................... 421
Unsigned long shift right .. 422
Long bitwise exclusive OR .. 423
Long integer shift left ... 424
Remainder of long integer division 425
Multiply long integer by long integer............................... 426
Negate a long integer.. 427
Bitwise OR with long integers ... 428
Long integer right shift ... 429
Long test against zero... 430
Long integer subtraction... 431
Convert long integer into double...................................... 432
Convert long integer into float ... 433
Quotient of unsigned long integer division 434
Remainder of unsigned long integer division................... 435
Unsigned long integer shift right 436
Bitwise exclusive OR with long integers 437
Compare a long integer to zero .. 438
Copy a structure to another... 439
Copy a structure to another... 440
Move stack pointer forward.. 441
Move stack pointer backward... 442
Move stack pointer forward.. 443
Quotient of unsigned integer division 444
Convert unsigned integer into double............................... 445
Convert unsigned integer into float 446
Unsigned long integer compare.. 447
Convert unsigned long integer into double 448
Convert unsigned long integer into float 449
Remainder of unsigned integer division........................... 450
Unsigned integer shift right .. 451
(xi)

(xii)
Banked function call for the MC68HC11C0.................... 452
Banked function call for the MC68HC11K4 453
Save bank descriptor for the MC68HC11C0 454
Save bank descriptor for the MC68HC11K4 455

Chapter D
Compiler Passes

The cp6811 Parser .. 458
Command Line Options ... 458
Return Status .. 461
Example.. 461

The cg6811 Code Generator... 462
Command Line Options ... 462
Return Status .. 463
Example.. 464

The co6811 Assembly Language Optimizer 465
Command Line Options ... 465
Disabling Optimization .. 466
Return Status .. 466
Example.. 466

Preface
he Cross Compiler User's Guide for MC68HC11 is a reference
guide for programmers writing C programs for MC68HCST1011

microcontroller environments. It provides an overview of how the cross
compiler works, and explains how to compile, assemble, link and debug
programs. It also describes the programming support utilities included
with the cross compiler and provides tutorial and reference information
to help you configure executable images to meet specific requirements.
This manual assumes that you are familiar with your host operating sys-
tem and with your specific target environment.

Organization of this Manual
This manual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments”, explains how to use the fea-
tures of C for MC68HC1 to meet the requirements of your particular
application. It explains how to create a runtime startup for your applica-
tion, and how to write C routines that perform special tasks such as:
serial I/O, direct references to hardware addresses, interrupt handling,
and assembly language calls.

T

© 2003 COSMIC Software Preface 1

Organization of this Manual

2

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the MC68HC11 assem-
bler and its options. It explains the rules that your assembly language
source must follow, and it documents all the directives supported by the
assembler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail all the features of the linker and their
use.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.

Appendix A, “Compiler Error Messages”, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Modifying Compiler Operation”, describes the “configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “MC68HC11 Machine Library”, describes the assembly
language routines that provide support for the C runtime library.

Appendix D, “Compiler Passes”, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.
© 2003 COSMIC SoftwarePreface

CHAPTER

1

Introduction
This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections:

• Introduction

• Document Conventions

• Compiler Architecture

• Predefined Symbol

• Linking

• Programming Support Utilities

• Listings

• Optimizations

• Support for Bank Switching

• Support for ROMable Code

• Support for eeprom
© 2003 COSMIC Software Introduction 3

Introduction1

4

Introduction
The C cross compiler targeting the MC68HC11 microcontroller reads C
source files, assembly language source files, and object code files, and
produces an executable file. You can request listings that show your C
source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC’s C source level cross debugger or by other debug-
gers or in-circuit emulators.

You begin compilation by invoking the cx6811 compiler driver with the
specific options you need and the files to be compiled.

Document Conventions
In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at a terminal or observe in a file. The following is a list
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is
used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It is also used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to a file will appear in a line box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

cx6811 +debug acia.c
© 2003 COSMIC SoftwareIntroduction

Document Conventions
If, however, the text included a partial listing of the file acia.c ‘an
example of text from a file or from output to the terminal’ then type-
writer font would still be used, but would be enclosed in a line box:

Italics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

In this example, cx6811 +debug file.c is shown in typewriter font
because it must be typed exactly as shown. Because the filename must
be specified by the user, however, file is shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because options is not
enclosed by brackets.

/* defines the ACIA as a structure */
struct acia {

char status;
char data;
} acia @0x6000;

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

NOTE

cx6811 +debug file.c
© 2003 COSMIC Software Introduction 5

Document Conventions1

6

As another example, the line:

file1.[o|h11]

means that one file with the extension .o or .h11 may be specified,
and the line:

file1 [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing a command line.

Command Line
A command line is generally composed of three major parts:

where <program_name> is the name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags
Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which is always a ‘-’ or a ‘+’, followed
by the name of the flag (usually a single letter). Some flags are simply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
as the second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed alphabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

program_name [<flags>] <files>
© 2003 COSMIC SoftwareIntroduction

Document Conventions
indicated by one of the following code, displayed immediately after the
option name:

If the code is immediately followed by the character ‘>’, the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex accepts the following distinct flags:

Code Type of information

* character string

short integer

long integer

? single character

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pp use paged address with mapping
-pn use paged address in bank only
-s output increasing addresses
-x* exclude named segment
© 2003 COSMIC Software Introduction 7

Compiler Architecture1

8

Compiler Architecture
The C compiler consists of several programs that work together to
translate your C source files to executable files and listings. cx6811
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

cp6811 - the C preprocessor and language parser. cp6811 expands
directives in your C source and parses the resulting text.

cg6811 - the code generator. cg6811 accepts the output of cp6811 and
generates assembly language statements.

co6811 - the assembly language optimizer. co6811 optimizes the
assembly language code that cg6811 generates.

Flags Function

-a accept a long integer value

-b accept a long integer value

-e accept a long integer value

-f accept a single character

-h simply a flag indicator

+h accept a character string

-m accept a short integer value,

-n accept a character string and may be repeated

-o accept a character string

-p simply a flag indicator

-pn simply a flag indicator

-pp simply a flag indicator

-s simply a flag indicator

-x accept a character string and may be repeated
© 2003 COSMIC SoftwareIntroduction

Predefined Symbol
ca6811 - the assembler. ca6811 converts the assembly language output
of co6811 to a relocatable object module.

Predefined Symbol
The COSMIC compiler defines the __CSMC__ preprocessor symbol. It
expands to a numerical value whose each bit indicates if a specific
option has been activated:

bit 0: set if nowiden option specified (+nowiden)
bit 1: set if single precision option specified (+sprec)
bit 2: set if unsigned char option specified (-pu)
bit 4: set if reverse bitfield option specified (+rev)
bit 5: set if no enum optimization specified (-pne)

Linking
clnk combines all the object modules that make up your program with
the appropriate modules from the C library. You can also build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cx6811, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC’s debugger to debug your code.

Programming Support Utilities
Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities listed below to inspect the executable.

cbank - optimize the bank filling with object file. It reorganizes a
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order.

chex - absolute hex file generator. chex translates executable images
produced by the linker into hexadecimal interchange formats, for use
with in-circuit emulators and PROM programmers. chex produces the
following formats:
© 2003 COSMIC Software Introduction 9

Listings1

10
- Motorola S-record format
- standard Intel hex format

clabs - absolute listing utility. clabs translates relocatable listings pro-
duced by the assembler by replacing all relocatable information by
absolute information. This utility must to be used only after the linker.

clib - build and maintain object module libraries. clib allows you to
collect related files into a single named library file for convenient stor-
age. You use it to build and maintain object module libraries in standard
library format.

cobj - object module inspector. cobj allows you to examine standard
format executable and relocatable object files for symbol table informa-
tion and to determine their size and configuration.

cv695 - IEEE695 format converter. cv695 allows you to generate
IEEE695 format file. This utility must to be used only after the linker.

Listings
Several options for listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.

If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.

Optimizations
The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:

• The compiler supports five programming models, allowing you to
generate fully optimized code for your target system.
© 2003 COSMIC SoftwareIntroduction

Optimizations
• The compiler uses register d to hold the first argument of a func-
tion call if:

1) the function does not return a structure or a double, and

2) the first argument is derived from one of the following types:

char,
short,
int, long,
float,
pointer to...,
or array of....

• The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-bit.

• The compiler eliminates unreachable code.

• Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

• Integer and float constant expressions are folded at compile time.

• Redundant load and store operations are removed.

• enum is large enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

• The compiler performs multiplication by powers of two as faster
shift instructions.

• An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.
© 2003 COSMIC Software Introduction 11

Support for Bank Switching1

12
• The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modules needed.

Support for Bank Switching
The compiler supports bank switching for code only, using the internal
window mechanism provided by the MC68HC11K4 processor, or
using any external user provided mechanism. Bank switching is sup-
ported via:

• @far type qualifier to describe a function relocated in a different
bank. Calling such a function implies a special calling sequence,
and a special return sequence. Such a function has to be defined
@far and referenced as @far in all the files using it.

• Linker options are required to ensure the proper boundaries,
alignment for physical and logical addresses computations.

Support for ROMable Code
The compiler provides the following features to support ROMable code
production. See Chapter 3 for more information.

• Referencing of absolute hardware addresses;

• Control of the MC68HC11 interrupt system;

• Automatic data initialization;

• User configurable runtime startup file;

The routines used to access the window registers are located in the
library files wcalc.s, wcalk.s and wsetup.s and have been written using
the default register address 0. These files must be modified if using a dif-
ferent base address

NOTE
© 2003 COSMIC SoftwareIntroduction

Support for eeprom
• Support for mixing C and assembly language code; and

• User configurable executable images suitable for direct input to a
PROM programmer or for direct downloading to a target system.

Support for eeprom
The compiler provides the following features to support eeprom han-
dling:

• @eeprom type qualifier to describe a variable as an eeprom loca-
tion. The compiler generates special sequences when the variable
is modified.

• Library functions for erasure, initialization and copy of eeprom
locations.

For information on using the compiler, see Chapter 4.
For information on using the assembler, see Chapter 5.
For information on using the linker, see Chapter 6.
For information on debugging support, see Chapter 7.
For information on using the programming utilities, see Chapter 8.
For information on the compiler passes, see Appendix D.

The basic routine to program an eeprom byte is located in the library file
eeprom.s and has been written using the default input/output address
0x1000. This file must be modified if using a different base address.

NOTE
© 2003 COSMIC Software Introduction 13

CHAPTER

2

Tutorial Introduction
This chapter will demonstrate, step by step, how to compile, assemble
and link the example program acia.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC tools, it will demonstrate the basics of using the com-
piler for the most common applications.

In this tutorial you will find information on the following topics:

• Default Compiler Operation

• Compiling and Linking

• Linking Your Application

• Generating Automatic Data Initialization

• Specifying Command Line Options
© 2003 COSMIC Software Tutorial Introduction 15

Acia.c, Example file2

16
Acia.c, Example file
The following is a listing of acia.c. This C source file is copied during
the installation of the compiler:

/* EXAMPLE PROGRAM WITH INTERRUPT HANDLING
 */
#include <io.h>

#define SIZE 512 /* buffer size */
#define TDRE 0x80 /* transmit ready bit */

/* Authorize interrupts. */
#define cli() _asm(“cli\n”)

/* Some variables */
char buffer[SIZE]; /* reception buffer */
char * ptlec; /* read pointer */
char * ptecr; /* write pointer */

/* Character reception.
 * Loops until a character is received.
 */
char getch(void)

{
char c; /* character to be returned */

while (ptlec == ptecr) /* equal pointers => loop */
;

c = *ptlec++; /* get the received char */
if (ptlec >= &buffer[SIZE])/* put in in buffer */

ptlec = buffer;
return (c);
}

/* Send a char to the SCI.
 */
void outch(char c)

{
while (!(SCSR & TDRE)) /* wait for READY */

;
SCDR = c; /* send it */
}

© 2003 COSMIC SoftwareTutorial Introduction

Acia.c, Example file
/* Character reception routine.
 * This routine is called on interrupt.
 * It puts the received char in the buffer.
 */
@interrupt void recept(void)

{
SCSR; /* clear interrupt */
ptecr++ = SCDR; / get the char */
if (ptecr >= &buffer[SIZE]) /* put it in buffer */

ptecr = buffer;
}

/* Main program.
 * Sets up the SCI and starts an infinite loop
 * of receive transmit.
 */
void main(void)

{
ptecr = ptlec = buffer; /* initialize pointers */
BAUD = 0x30; /* initialize SCI */
SCCR2 = 0x2c; /* parameters for interrupt */
cli(); /* authorize interrupts */
for (;;) /* loop */

outch(getch()); /* get and put a char */
}

Default Compiler Operation
By default, the compiler compiles and assembles your program. You
may then link object files using clnk to create an executable program.

As it processes the command line, cx6811 echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.

According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

file.s Assembler source module
file.o Relocatable object module
file.h11input (e.g. libraries) or output (e.g. absolute executable)

file for the linker
© 2003 COSMIC Software Tutorial Introduction 17

Compiling and Linking2

18
Compiling and Linking
To compile and assemble acia.c using default options, type:

The compiler writes the name of the input file it processes:

The result of the compilation process is an object module named acia.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Step 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named acia.s.

The -s option directs cx6811 to stop after having produced the assembly
file acia.s. You can then edit this file with your favorite editor. You can
also visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

If you wish to get an interspersed C and assembly language file, you
should type:

The -l option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with ‘;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.

cx6811 acia.c

acia.c:

cx6811 -s acia.c

type acia.s

cx6811 -l acia.c
© 2003 COSMIC SoftwareTutorial Introduction

Compiling and Linking
The -v option, known as verbose mode, instructs the C compiler to dis-
play all of its actions. For example if you type:

the display will look like something similar to the following:

acia.c:
cp6811 -o ctempc.cx1 -i\cx\h6811 -u acia.c
cg6811 -o ctempc.cx2 ctempc.cx1
co6811 -o acia.s ctempc.cx2

The compiler runs each pass:

For more information, see Appendix D, “Compiler Passes”.

Step 2: Assembling
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is acia.o.

or

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
a listing file named acia.ls that will also contain a cross reference:

For more information, see Chapter 5, “Using The Assembler”.

cp6811 the C parser

cg6811 the assembly code generator

co6811 the optimizer

cx6811 -v -s acia.c

cx6811 acia.s

ca6811 -i\cx\h6811 acia.s

ca6811 -c -l acia.s
© 2003 COSMIC Software Tutorial Introduction 19

Compiling and Linking2

20
Step 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.o) into
an absolute executable file: acia.h11 in our example. Code and data
sections will be located at absolute memory addresses. The linker is
used with a command file (acia.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, interrupt vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

In our example, and in the test file provided with the compiler, the
acia.lkf file contains the following information:

1 # LINK COMMAND FILE FOR TEST PROGRAM
2 # Copyright (c) 1995 by COSMIC Software
3 #
4 +seg .text -b 0xe000 -n.text# program start address
5 +seg .const -a .text # constants after program
6 +seg .data -b 0x2000 # data start address
7 crts.o # startup routine
8 acia.o # application program
9 \cx\lib\libi.h11 # C library (if needed)
10 \cx\lib\libm.h11 # machine library
11 +seg .const -b0xffd6 # vectors start address
12 vector.o # interrupt vectors file
13 +def __memory=@.bss # symbol used by startup
14 +def __stack=0x00ff # stack pointer initial value

Type Description

.text code (or program) section (e.g. ROM)

.const constant and literal data (e.g. ROM)

.data all static initialized data (e.g. RAM)

.bss all non initialized data (e.g. RAM)

.bsct all data in the first 256 bytes (see @dir in chapter 3),
also called zero page
© 2003 COSMIC SoftwareTutorial Introduction

Compiling and Linking
You can create your own link command file by modifying the one pro-
vided with the compiler.

Here is the explanation of the lines in acia.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#” character.

line 4: +seg .text -b0xe000 -n.text creates a text (code) seg-
ment located at hex address e000, and sets the segment name to .text.

line 5: +seg .const -a.text creates a constant segment located
after the previous text segment.

line 6: +seg .data -b0x2000 creates a data segment located at hex
address 2000.

line 7: crts.o runtime startup code. It will be located at 0xe000 in
the text segment.

line 8: acia.o, the file that constitutes your application. It follows the
startup routine for code and data.

line 9: libi.h11 the integer library to resolve references.

line 10: libm.h11 the machine library to resolve references.

line 11: +seg .const -b0xffd6 creates a new constant segment
located at hex address ffd6.

line 12: vectors.o interrupt vectors file.

line 13: +def __memory=@.bss defines a symbol __memory equal
to the value of the current address in the .bss segment. This is used to
get the address of the end of the bss. The symbol __memory is used by
the startup routine to reset the bss.

line 14: +def __stack=0x00ff defines a symbol __stack equal to
the absolute value 00ff (hex value). The symbol __stack is used by the
startup routine to initialize the stack pointer.
© 2003 COSMIC Software Tutorial Introduction 21

Compiling and Linking2

22
By default, and in our example, the .bss segment follows the .data seg-
ment.

The crts.o file contains the runtime startup that performs the following
operations:

• initialize the bss, if any

• initialize the stack pointer

• call main() or any other chosen entry point.

For more information, see “Modifying the Runtime Startup” in Chapter
3.

After you have modified the linker command file, you can link by typ-
ing:

For more information, see Chapter 6, “Using The Linker”.

Step 4: Generating S-Records file
Although acia.h11 is an executable image, it may not be in the correct
format to be loaded on your target. Use the chex utility to translate the
format produced by the linker into standard formats. To translate
acia.h11 to Motorola standard S-record format:

or

acia.hex is now an executable image in Motorola S-record format and
is ready to be loaded in your target system.

For more information, see “The chex Utility” in Chapter 8.

clnk -o acia.h11 acia.lkf

chex acia.h11 > acia.hex

chex -o acia.hex acia.h11
© 2003 COSMIC SoftwareTutorial Introduction

Linking Your Application
Linking Your Application
You can create as many text, data and bss segments as your application
requires. For example, assume we have one bss, two data and two text
segments. Our link command file will look like:

+seg .bsct -b0x0 # zpage start address
var_zpage.o # zpage variables file
+seg .text -b 0xe000 -n .text # program start address
+seg .const -a .text # constants follow program
+seg .data -b 0x2000 # data start address
+seg .bss -b 0x2500 # bss start address
crts.o # startup routine
acia.o # main program
module1.o # application program
+seg .text -b 0xf000 # start new text section
module2.o # application program
module3.o # application program
\cx\lib\libi.h11 # C library (if needed)
\cx\lib\libm.h11 # machine library
+seg .const -b0xffd6 # vectors start address
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x00ff # stack pointer initial value

In this example the linker will locate and merge crts.o, acia.o and
module1.o in a text segment at 0xe000 immediately followed by a con-
stant segment, a data segment at 0x2000 and a bss segment, if needed
at 0x2500. zero page variables will be located at 0x0. The rest of the
application, module2.o and module3.o and the libraries will be located
and merged in a new text segment at 0xf000 then the interrupt vectors
file, vector.o in a constant segment at 0xffd6.

For more information about the linker, see Chapter 6, “Using The
Linker”.
© 2003 COSMIC Software Tutorial Introduction 23

Generating Automatic Data Initialization2

24
Generating Automatic Data Initialization
Usually, in embedded applications, your program must reside in ROM.

This is not an issue when your application contains code and read-only
data (such as string or const variables). All you have to do is to burn a
PROM with the correct values and plug it into your application board.

The problem comes up when your application uses initial data values
that you have defined with initialized static data. These static data val-
ues must reside in RAM.

There are two types of static data initializations:

1) data that is explicitly initialized to a non-zero value:

char var1 = 25;

which is generated into the .data section and

2) data that is explicitly initialized to zero or left uninitialized:

char var2;

which is generated into the .bss section.

There is one exception to the above rules when you declare data that
will be located in the zero page, using the @dir type qualifier. In this
case, the data is generated into the .bsct section.

The first method to ensure that these values are correct consists in add-
ing code in your application that reinitializes them from a copy that you
have created and located in ROM, at each restart of the application.

The second method is to use the crtsi.h11 start-up file:

1) that defines a symbol that will force the linker to create a copy of
the initialized RAM in ROM

2) and that will do the copy from ROM to RAM
© 2003 COSMIC SoftwareTutorial Introduction

Generating Automatic Data Initialization
The following link file demonstrates how to achieve automatic data ini-
tialization.

+seg .text -b 0xe000 -n .text # program start address
+seg .const -a .text # constants follow program
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x2000 # data start address
\cx\lib\crtsi.h11 # startup with auto-init
acia.o # main program
module1.o # module program
\cx\lib\libi.h11 # C library (if needed)
\cx\lib\libm.h11 # machine library
+def __memory=@.bss # symbol used by library

In the above example, the text segment is located at address 0xe000,
the data segment is located at address 0x2000, immediately followed
by the bss segment that contains uninitialized data. The copy of the ini-
tialized data in ROM will follow the descriptor created by the linker
after the code segment.

In case of multiple code and data segments, a link command file could
be:

+seg .text -b 0xe000 -n .text # program start address
+seg .const -a .text # constants follow program
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x2000 # data start address
\cx\lib\crtsi.h11 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xf000 # new code segment
module2.o # module program
module3.o # module program
\cx\lib\libi.h11 # C library (if needed)
\cx\lib\libm.h11 # machine library
+seg .const -b 0xffd6 # vectors start address
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x00ff # stack pointer initial value

or

+seg .text -b 0xe000 -n .text # program start address
+seg .const -a .text # constants follow program
© 2003 COSMIC Software Tutorial Introduction 25

Specifying Command Line Options2

26
+seg .bsct -b 0 -m 0x100 # zpage start address
+seg .data -b0x1000 # data start address
\cx\lib\crtsi.h11 # startup with auto-init
acia.o # main program
module1.o # module program
+seg .text -b0xf000 -it # sets the section attribute
module2.o # module program
module3.o # module program
\cx\lib\libi.h11 # C library (if needed)
\cx\lib\libm.h11 # machine library
+seg .const -b 0xffd6 # vectors start address
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup
+def __stack=0x00ff # stack pointer initial value

In the first case, the initialized data will be located after the first code
segment. In the second case, the -it option instructs the linker to locate
the initialized data after the segment marked with this flag. The initial-
ized data will be located after the second code segment located at
address 0xf000.

For more information, see “Initializing data in RAM” in Chapter 3and
“Automatic Data Initialization” in Chapter 6.

Specifying Command Line Options
You specify command line options to cx6811 to control the compilation
process.

To compile and produce a relocatable file named acia.o, type:

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -l option instructs the compiler driver to
create a mixed listing of C code and assembly language code in the file
acia.ls.

To perform the operations described above, enter the command:

cx6811 acia.c

cx6811 -v -l acia.c
© 2003 COSMIC SoftwareTutorial Introduction

Specifying Command Line Options
When the compiler exits, the following files are left in your current
directory:

• the C source file acia.c

• the C and assembly language listing acia.ls

• the object module acia.o

It is possible to locate listings and object files in specified directories if
they are different from the current one, by using respectivally the -cl
and -co options:

This command will compile the acia.c file, create a listing named
acia.ls in the \mylist directory and an object file named acia.o in the
\myobj directory.

cx6811 allows you to compile more than one file. The input files can be
C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

This command will assemble the start.s file, and compile the two C
source files.

See Chapter 4, “Using The Compiler” for information on these and
other command line options.

cx6811 -cl\mylist -co\myobj -l acia.c

cx6811 -v start.s acia.c getchar.c
© 2003 COSMIC Software Tutorial Introduction 27

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program development
system to perform special tasks required by various MC68HC11 appli-
cations.
© 2003 COSMIC Software Programming Environments 29

Introduction3

30
Introduction
The 68HC11 COSMIC compiler is an ANSI C compiler that offers sev-
eral extensions which support special requirements of embedded sys-
tems programmers. This chapter provides details about:

• Modifying the Runtime Startup

• Initializing data in RAM

• Performing Input/Output in C

• The const and volatile Type Qualifiers

• Placing Data Objects in The Bss Section

• Placing Data Objects in The Zero Page Section

• Placing Data Objects in the EEPROM Space

• Redefining Sections

• Stack Usage

• Inserting Inline Assembly Instructions

• Referencing Absolute Addresses

• Writing Interrupt Handlers

• Placing Addresses in Interrupt Vectors

• Accessing Internal Registers

• Fast Function Calls

• Interfacing C to Assembly Language

• Calling a Bank Switched Function

• Register Usage

• Heap Management Control with the C Compiler

• Data Representation
© 2003 COSMIC SoftwareProgramming Environments

Modifying the Runtime Startup
Modifying the Runtime Startup
The runtime startup module performs many important functions to
establish a runtime environment for C. The runtime startup file included
with the standard distribution provides the following:

• Initialization of the bss section if any,

• ROM into RAM copy if required,

• Initialization of the stack pointer,

• _main or other program entry point call, and

• An exit sequence to return from the C environment. Most users
must modify the exit sequence provided to meet the needs of their
specific execution environment.

The following is a listing of the standard runtime startup file crts.h11
included on your distribution media. It does not perform automatic data
initialization. A special startup program is provided, crtsi.h11, which is
used instead of crts.h11 when you need automatic data initialization.
The runtime startup file can be placed anywhere in memory. Usually,
the startup will be “linked” with the RESET interrupt, and the startup
file may be at any convenient location.

Description of Runtime Startup Code
1 ; C STARTUP FOR MC68HC11
2 ; Copyright (c) 1995 by COSMIC Software
3 ;
4 xdef _exit, __stext
5 xref _main, __memory, __stack
6 ;
7 switch.bss
8 __sbss:
9 switch.text
10 __stext:
11 clra ; reset the bss
12 ldx #__sbss ; start of bss
13 bra loop ; start loop
14 zbcl:
15 staa 0,x ; clear byte
16 inx ; next byte
© 2003 COSMIC Software Programming Environments 31

Modifying the Runtime Startup3

32
17 loop:
18 cpx #__memory ; up to the end
19 bne zbcl ; and loop
20 lds #__stack ; initialize stack pointer
21 jsr _main ; execute main
22 _exit:
23 bra _exit ; and stay here
24 ;
25 end

_main is the entry point into the user C program.

__memory is an external symbol defined by the linker as the end of the
bss section. The start of the bss section is marked by the local symbol
__sbss.

__stack is an external symbol defined by the linker as an absolute
value.

Lines 11 to 19 reset the bss section.

Line 20 sets the stack pointer. You may have to modify it to meet the
needs of your application.

Line 21 calls main() in the user's C program.

Lines 22 to 23 trap a return from main(). If your application must return
to a monitor, for example, you must modify this line.
© 2003 COSMIC SoftwareProgramming Environments

Initializing data in RAM
Initializing data in RAM
If you have initialized static variables, which are located in RAM, you
need to perform their initialization before you start your C program.
The clnk linker will take care of that: it moves the initialized data seg-
ments after the first text segment, or the one you have selected with the
-it option, and creates a descriptor giving the starting address, destina-
tion and size of each segment.

The table thus created and the copy of the RAM are located in ROM by
the linker, and used to do the initialization. An example of how to do
this is provided in the crtsi.s file located in the headers subdirectory.

; C STARTUP FOR MC68HC11
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 1995 by COSMIC Software
;

xdef _exit, __stext
xref _main, __memory, __idesc__, __stack

;
switch.bss

__sbss:
svx:

dc.w 0
sve:

dc.w 0
;

switch.text
__stext:

ldx #__idesc__ ; descriptor address
ldy 0,x ; start address of prom data
inx ; skip address
inx

ibcl:
ldaa 0,x ; test flag byte
beq zbss ; no more segment
bpl nobk ; skip bank
inx ; info
inx ; if any

nobk:
stx svx ; save pointer
ldd 3,x ; end address
std sve ; in memory
ldx 1,x ; destination address

dbcl:
© 2003 COSMIC Software Programming Environments 33

Initializing data in RAM3

34
ldab 0,y ; copy from prom
stab 0,x ; to ram
inx ; next byte
iny
cpy sve ; last one ?
bne dbcl ; no, loop again
ldx svx ; reload pointer to desc
ldab #5 ; size of one entry
abx ; point to next entry
bra ibcl ; and loop

zbss:
ldx #__sbss ; start of bss
bra loop ; start loop

zbcl:
staa 0,x ; clear byte
inx ; next byte

loop:
cpx #__memory ; up to the end
bne zbcl ; and loop
lds #__stack ; initialize stack pointer
jsr _main ; execute main

_exit:
bra _exit ; and stay here

;
end

crtsi.s performs the same function as described with the crts.s, but with
one additional step. Lines (marked in bold) in crtsi.s include code to
copy the contents of initialized static data, which has been placed in the
text section by the linker, to the desired location in RAM.

For more information, see Chapter 2, “Generating Automatic Data Ini-
tialization” and Chapter 6, “Automatic Data Initialization”.
© 2003 COSMIC SoftwareProgramming Environments

The const and volatile Type Qualifiers
The const and volatile Type Qualifiers
You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

Volatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores a value in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) all data objects or variables associated with a memory mapped hard-
ware register e.g. volatile char PORTD @0x1008;

2) all global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in an interrupt service routine.

NOTE
© 2003 COSMIC Software Programming Environments 35

Performing Input/Output in C3

36
If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no data initializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument in the related function. If you declare a
data object of const type and dynamic lifetime at block level, you must
specify its stored value by writing a data initializer. If you specify no
data initializer, the stored value is undefined.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a variable
whose value may be set by another program.

Examples of data objects declared with type qualifiers are:

Performing Input/Output in C
You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts, sprintf, vprintf and vsprintf. They are
described in chapter 4.

The C source code for these and all other C library functions is included
with the distribution, so that you can modify them to meet your specific
needs. Note that all input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to all input/output library functions. The library is
built in such a way that you need only modify getchar and putchar, the
rest of the library is independent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);

char * const x; /* const pointer to char */
int * volatile y; /* volatile pointer to int */
const float pi = 355.0 / 113.0; /* pi is never changed */
© 2003 COSMIC SoftwareProgramming Environments

Placing Data Objects in The Bss Section
Placing Data Objects in The Bss Section
The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .bss section. All initialized static data are
placed in the .data section. The bss section is located, by default, after
the data section by the linker.

The run-time startup files, crts.s and crtsi.s, contain code which initial-
izes the bss section space to zero.

The compiler provides a special option, +nobss, which forces uninitial-
ized data to be explicitly located in the .data section. In such a case,
these variables are considered as beeing explicitely initialized to zero.

Placing Data Objects in The Zero Page Section
The zero page section, or “zpage”, refers to data that is accessed in the
internal memory of the MC68HC11 chip and may be accessed with one
byte address; this is the first 256 bytes of memory. Placing initialized
data objects in the zero page section optimizes code size and execution
time.

To place data objects selectively into the zero page section, use the type
qualifier @dir when you declare the data object. For example:

A data object declared this way will be located into the section .bsct.
An external object name is published via a xref.b declaration at the
assembly language level.

To place data objects into the zero page on a file basis, you use the
#pragma directive of the compiler. The compiler directive:

instructs the compiler to place all data objects of storage class extern or
static into the zero page for the current unit of compilation (usually a
file). The section must end with a #pragma space [].

@dir char var;

#pragma space [] @dir
© 2003 COSMIC Software Programming Environments 37

Redefining Sections3

38
The compiler provides a special option, +zpage, which forces the
#pragma directive described above for all files compiled with that
option.

Setting Zero Page Size
You can define the maximum size of the zero page section of your
application at link time by specifying the following options on the
linker command line:

where ## represents the size of the zero page section in bytes. Note that
the size of the zero page section can never exceed 256 bytes.

Redefining Sections
The compiler uses by default predefined sections to output the various
component of a C program. The default sections are:

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

Section Description

.text executable code

.const text string and constants

.data initialized variables

.bss uninitialized variables

.bsct any variable in zero page (@dir)

.eeprom any variable in eeprom (@eeprom)

The code generator does not check for zero page overflow.
NOTE

+seg .bsct -m##
© 2003 COSMIC SoftwareProgramming Environments

Redefining Sections
where <attribute> is either empty or one of the following sequences:

const
@dir
@eeprom

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly braces indicating initialized data

A section name is a plain C identifier which does not begin with a dot
character, and which is no longer than 13 characters. The compiler will
prefix automatically the section name with a dot character when passing
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the bss section forces the compiler to
produce the memory definitions for all the previous bss declarations
before to switch to the new section.

The following directives:

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .code
- strings and constants are redirected to section .string
- uninitialized variables are redirected to section .udata
- initialized data are redirected to section .idata
- zero page variables are redirected to section .zpage
- eeprom variables are redirected to section .e2prom

#pragma section (code)
#pragma section const {string}
#pragma section [udata]
#pragma section {idata}
#pragma section @dir {zpage}
#pragma section @eeprom {e2prom}
© 2003 COSMIC Software Programming Environments 39

Fast Function Calls3

40
Note that {name} and [name] are equivalent for constant, zero page
and eeprom sections as they are all considered as initialized.

The following directive:

switches back the code section to the default section .text.

Fast Function Calls
When the compiler is invoked with the +fast option, the entry and
return sequences are produced with inline code instead of machine
library function calls. This produces larger but faster code. To produce
selectively such a code for a function, use the type @fast when you
declare the function. A function entry sequence will look like:

A function return sequence will look like:

In all cases, the compiler will shorten these sequences if the size of the
stack frame is small enough, by using a combination of pshx and des
instructions to open the stack frame, and a combination of pulx and
ins instructions to close the stack frame.

#pragma section ()

pshx
tsx
xgdx
addd #<-#>
xgdx
txs

tsx
xgdx
addd #<#>
xgdx
txs
pulx
rts
© 2003 COSMIC SoftwareProgramming Environments

Placing Data Objects in the EEPROM Space
Placing Data Objects in the EEPROM Space
The compiler allows to define a variable as an eeprom location, using
the type qualifier @eeprom. This causes the compiler to produce spe-
cial code when such a variable is modified. When the compiler detects a
write to an eeprom location, it calls a machine library function which
performs the actual write. An example of such a definition is:

To place all data objects from a file into eeprom, you can use the
#pragma directive of the compiler. The directive

instructs the compiler to treat all extern and static data in the current file
as eeprom locations. The section must end with a #pragma space[].

The compiler allocates @eeprom variables in a separate section named
.eeprom, which will be located at link time. The linker directive:

will create a segment located at address 0xb600, with a maximum size
of 512 bytes.

@eeprom char var;

#pragma space [] @eeprom

If you change the location of the default 6811 register map from 0x1000
to some other address, you must also change the address in the eeprom.s
source file, which is in object form in the libm.h11. The source is located
in the libm sub-directory.

NOTE

+seg .eeprom -b0xb600 -m512
var_eeprom.o

The code generator cannot check if the final address of an @eeprom
object will be valid after linkage.

NOTE
© 2003 COSMIC Software Programming Environments 41

Stack Usage3

42
Stack Usage
By default, a function uses the stack for its arguments and local varia-
bles. When the stack size is too small, it is possible to instruct the com-
piler not to use the stack, but a static memory area for arguments and
local variables. The @nostack modifier is used on a function declara-
tion to indicate that this function does not use the stack. The code gen-
erator can be configured to use several different mechanisms. Different
behaviours are selected by the +st0, +st1, +st2 or +st3 flags on the
compiler command line. These options are referred to as the static
models. Note that it is possible to force all functions to use the @nos-
tack modifier with the compiler option +nostk.

Static Model 0
Each function declared with the @nostack modifier, places its argu-
ments and local variables in a private memory area allocated in the .bss
section. This memory area will not be used by any other function, and
thus the only restriction to that model is that such a function should not
call itself recursively, either directly or indirectly.

Static Model 1
Each function declared with the @nostack modifier, places its argu-
ments and local variables in a private memory area allocated in the
.bsct section. This memory area will not be used by any other function,
and thus the only restriction to that model is that such a function should
not call itself recursively, either directly or indirectly. The linker should
control the .bsct size (-m option).

Static Model 2
Each function declared with the @nostack modifier, places its argu-
ments and local variables in a shared memory area allocated in the .bss
section. The linker will group all the shared areas declared by all such
functions in the application, and will allocate these areas in order to
minimize the total size, by overlapping areas corresponding to exclu-
sive functions. Two functions are exclusive if they don’t call each other
directly or indirectly. Recursive functions are still not allowed.

Static Model 3
Each function declared with the @nostack modifier, places its argu-
ments and local variables in a shared memory area allocated in the
© 2003 COSMIC SoftwareProgramming Environments

Referencing Absolute Addresses
.bsct section. The linker will group all the shared areas declared by all
such functions in the application, and will allocate these areas in order
to minimize the total size, by overlapping areas corresponding to exclu-
sive functions. Two functions are exclusive if they don’t call each other
directly or indirectly. Recursive functions are still not allowed. The
linker should control the .bsct size (-m option).

Referencing Absolute Addresses
This C compiler allows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give a memory location a symbolic name and
associated type, and use it as you would do with any C identifier. This
feature is useful for accessing memory mapped I/O ports or for calling
functions at known addresses in ROM.

References to absolute addresses have the general form @<address>,
where <address> is a valid memory location in your environment. For
example, to associate an I/O port at address 0x0 with the identifier
name PORTA, write a definition of the form:

where @0x0 indicates an absolute address specification and not a data
initializer. Since input/output on the MC68HC11 architecture is mem-
ory mapped, performing I/O in this way is equivalent to writing in any
given location in memory.

To use the I/O port in your application, write:

When using static models 2 or 3, the compiler reserves the corresponding
memory areas, but does not allocate them. The linker will allocate all
these areas after having rearranged them in order to use the smallest
amount of memory possible. In order to perform this rearrangement, the
linker needs information about all the function calls in the application.
This means that even if all the functions are not declared with the
@nostack modifier, all the source files need to be compiled with the +st2
or +st3 option. Otherwise, the linker may produce incorrect overlaid

NOTE

char PORTA @0x0;
© 2003 COSMIC Software Programming Environments 43

Referencing Absolute Addresses3

44
Another solutions is to use a #define directive with a cast to the type of
the object being accessed, such as:

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of a slight loss in portability.
Note that COSMIC C does support the pointer and #define methods of
implementing I/O access.

It is also possible to define structures at absolute addresses. For exam-
ple, one can write:

Using this declaration, references to acia.status will refer to mem-
ory location 0x6000 and acia.data will refer to memory location
0x6001. This is very useful if you are building your own custom I/O
hardware that must reside at some location in the 68HC11 memory
map.

Such a declaration does not reserve any space in memory. The compiler
still creates a label, using an equate definition, in order to reference the
C object symbolically. This symbol is made public to allow external
usage from any other file.

char c;
c = PORTA; /* to read from input port */
PORTA = c; /* to write to output port */

#define PORTA *(char *)0x0

struct acia
{
char status;
char data;
} acia
© 2003 COSMIC SoftwareProgramming Environments

Accessing Internal Registers
Accessing Internal Registers
The type modifier @port may be used on a data object in conjunction
with an absolute address to improve access to an internal register. These
input-output registers are seen as memory locations, but bit instructions
are inoperative on extended addressing mode. The @port type modifier
instructs the compiler to load the base address indirectly, allowing effi-
cient bit instructions to be used. When the absolute address is specified,
the base address loaded is obtained from the upper bits of the full
address (0x1000 for an address equal to 0x1021). The PORTB register
may be declared:

The @port modifier may be omitted when the register is accessed as
bytes rather than bits.

All registers are declared in the io.h file provided with the compiler.
This file should be included by a:

in each file using the input-output registers. Five separate files ioc0.h,
iod3.h, iof1.h, iok4.h and ion4.h are provided for the special
68HC11C0, 68HC11D3/D0, 68HC11F1, 68HC11K4 and 68HC11N4
processors. They do not use the same set of registers than the standard
family.

All the register names are defined by assembly equates which are made
public. This allows any assembler source to use directly the input-out-
put register names by defining them with an xref directive. All those
definitions are already provided in the io.s files which may be included
in an assembly source by a:

All these header files assume a default location for the input-output reg-
isters depending on the actual target. This default value may be changed

@port char PORTB @0x1004;

#include <io.h>

 include "io.s"
© 2003 COSMIC Software Programming Environments 45

Inserting Inline Assembly Instructions3

46
by defining the C symbol _BASE by a #define directive before the
header file #include:

The default value of 0x1000 for the register starting address as defined
by the file <io.h> is changed to 0.

Note that the compiler will access to these registers as standard varia-
bles. In some case of reading or writing some “int” registers, you should
declare an union (with two char and one int) instead of using directly
the I/O register.

Inserting Inline Assembly Instructions
The compiler features two ways to insert assembly instructions in a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connection with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas
The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

The compiler also accepts shorter sequences with the same meaning:

Directive Description

#pragma asm start assembler block

#pragma endasm end assembler block

#define _BASE 0
#include <io.h>

The @port modifier is an extension to the ANSI standard.
NOTE
© 2003 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the
middle.

The following example shows a correct syntax:

Inlining with _asm
The _asm() function inserts inline assembly code in your C program.
The syntax is:

Directive Description

#asm start assembler block

#endasm end assembler block

#pragma asm
xref asmvar

#pragma endasm

extern char test;

void func(void)
{
if (test)

#asm /* no need for { */
sec ; set carry bit
rol asmvar ; access assembler variable

#endasm
else

test = 1;
}

_asm(“string constant”, arguments...);
© 2003 COSMIC Software Programming Environments 47

Inserting Inline Assembly Instructions3

48
The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments” follow the standard C rules for
passing arguments.

The string you specify follows standard C rules. For example, carriage
returns can be denoted by the ‘\n’ character.

For example, to produce the following assembly sequence:

you would write:

The ‘\n’ character is used to separate the instructions when writing mul-
tiple instructions in the same line.

To copy a value in the condition register, you write:

The varcc variable is passed in the d register, as a first argument. The
_asm sequence then transfers the low byte from the b register to the a
register then to the condition register.

_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive calls to _asm().

NOTE

xgdx
addd #1000h
xgdx
txs
jsr _main

_asm(“xgdx\n addd #1000H\nxgdx\ntxs\njsr _main\n”);

_asm(“tba\ntap\n”, varcc);
© 2003 COSMIC SoftwareProgramming Environments

Inserting Inline Assembly Instructions
_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

allows to test the overflow bit. That way, you can use _asm() to write
equivalents of C functions directly in assembly language.

By default, _asm() is returning an int as any undeclared function. To
avoid the need of several definitions (usually confictuous) when _asm()
is used with different return types, the compiler implements a special
behaviour when a cast is applied to _asm(). In such a case, the cast is
considered to define the return type of _asm() instead of asking for a
type conversion. There is no need for any prototype for the _asm()
function as the parser verifies that the first argument is a string constant.

Inlining Labels
When labels are necessary in the inlined assemby code, the compiler
provides a special syntax allowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, a simple wait loop may be entered as follow:

if (_asm(“tpa\ntab\n”) & 0x010)

With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the -a option is specified on the code generator. The
assembler input can use lowercase or uppercase mnemonics, and may
include assembler comments.

NOTE

#asm
ldab #7

$N:
bne b,$L ; loop on the previous label

#endasm
© 2003 COSMIC Software Programming Environments 49

Writing Interrupt Handlers3

50
Writing Interrupt Handlers
A function declared with the type qualifier @interrupt is suitable for
direct connection to an interrupt (hardware or software). @interrupt
functions may not return a value. @interrupt functions are allowed to
have arguments, although hardware generated interrupts are not likely
to supply anything meaningful.

When you define an @interrupt function, the compiler uses the “rti”
instruction for the return sequence.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such a definition is:

You cannot call an @interrupt function directly from a C function. It
must be connected with the interrupt vectors table.

Placing Addresses in Interrupt Vectors
You may use either an assembly language program or a C program to
place the addresses of interrupt handlers in interrupt vectors. The
assembly language program would be similar to the following example:

where handler1 and so forth are interrupt handlers.

@interrupt void it_handler(void)
{
...
}

The @interrupt modifier is an extension to the ANSI standard.
NOTE

switch .const
xref handler1, handler2, handler3

vector1:dc.w handler1
vector2:dc.w handler2
vector3:dc.w handler3

end
© 2003 COSMIC SoftwareProgramming Environments

Calling a Bank Switched Function
A small C routine that performs the same operation is:

where handler1 and so forth are interrupt handlers. Then, at link time,
include the following options on the link line:

where vector.o is the file which contains the vector table. This file is
provided in the compiler package. You should modify this vector table
as necessary for your application.

Calling a Bank Switched Function
When using a 68HC11K4 processor or an external bank switching
mechanism, it is possible to call directly a function which is located in a
different bank. To perform the correct call, it is necessary to declare the
function with the @far type modifier. This extension does not modify
the code for the function itself, but modifies the way the function is
called.

An example of such a definition is:

extern void handler1(), handler2(), handler3();
void (* const vector[])() =

{
handler1,
handler2,
handler3,
};

+seg .const -b0xffd6 vector.o

The libraries are not built as @far functions and should not be located in
a banked area, if they need to be accessed from any bank.

NOTE

@far int func(void)
{
...
}

© 2003 COSMIC Software Programming Environments 51

Calling a Bank Switched Function3

52
The compiler uses special machine library functions to call a banked
function. These library functions are dedicated to the 68HC11C0 and
the 68HC11K4 processors and use the first window to access the target
function. It is necessary to modify these function to adapt this mecha-
nism to an external bank switching. All these library functions are in the
files named wcalc.s and wcalk.s respectively in the machine library.

When linking a bank switched application, several options must be used
to configure the linker properly:

The switching functions have to be linked in the non switched part of
the application. The full machine library should be linked in the non
switched part of the application for efficiency, but it may duplicated in
each bank for space reasons.

The bank switching mechanism uses static pointer called c_descc (for
the 68HC11C0) or c_desck (for the 68HC11K4). This pointer points at
a memory location called a call_descriptor which is initialized with the
actual return address and the return bank number. For each function
called through the bank switching mechanism, the compiler creates a
pointer to the @far function, the first word contains the bank number on
16 bits, and the second word contains the address on 16 bits. This is a
far pointer; it may be constructed in C as a pointer to a far function.

-b should be specified with the physical address for each
code segment or bank

-bs is automatically set with the value 13 for the 68HC11K4
processor. The bank number extracted by the linker and
copied into the window base register, then points to a 8K
bytes block. This option is located on the command line.

-m should be specified with the maximum size of each seg-
ment or bank. It is 0x1fff for the 68HC11K4.

-o should be specified with the logical starting address for
each code segment or bank. It normally is the window
base address in the 64K limits.
© 2003 COSMIC SoftwareProgramming Environments

Calling a Bank Switched Function
Assuming we are building an application with a root segment at
0xE000 and a window at 0x8000, the link command file should look
like:

given two banks, the first one obtained from func1, func2 and func3
linked at physical address 0x10000, the second obtained from func4,
func5 and func6 linked at physical address 0x11000. The window
mechanism has to be initialized with the first window at 0x8000. The
code to perform this initialization has to be located in the root segment,
for instance at the beginning of the main function. The compiler pro-
vides a function named _wsetup(). You can call it from your C program.
It sets the first window with a 8K size, assigns all the PORTG bits for
extended addressing, and sets the window start address with the value
of the external symbol _wbase, which has to be set by the linker to the
starting address of the window with a +def directive such as:

placed just after the opening of a bank text segment. You can use your
own initialization mechanism. In that case, you don’t need to define this
symbol.

 The linker should thus be called with the following options:

+seg .text -b 0x10000 -o 0x8000 -m 0x1fff
func1.o func2.o func3.o
+seg .text -b 0x11000 -o 0x8000 -m 0x1fff
func4.o func5.o func6.o
+seg .text -b 0xe000 -o 0xe000
main.o libm.h11

+seg .text -b 0x10000 -o 0x80000 -m 0x1FFF
+def __wbase=@.text

clnk -o appli.h11 -bs13 appli.lkf
© 2003 COSMIC Software Programming Environments 53

Interfacing C to Assembly Language3

54
Interfacing C to Assembly Language
The C cross compiler translates C programs into assembly language
according to the specifications described in this section.

You may write external identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘_’ character to each identifier.

The compiler places function code in the .text section. Function code is
not to be altered or read as data. External function names are published
via xdef declarations.

Literal data such as strings, float or long constants, and switch tables,
are normally generated into the .const section. An option on the code
generator allows such constants to be produced in the .text section

The compiler generates initialized data into the .data section. External
data names are published via xref declarations. Data you declare to be
of “const” type by adding the type qualifier const to its base type is nor-
mally generated into the .const section. Data declared with the @dir
space modifier will be generated into the .bsct section. Uninitialized
data are normally generated into the .bss section , unless forced to the
.data section by the compiler option +nobss.

Function calls are performed according to the following:

1) Arguments are moved onto the stack from right to left. Unless the
function returns a structure, the first argument is stored in the d
register if its size is less than or equal to the size of an int, or in d
and 2,x if its type is long or unwidened float.

Section Declaration Reference

.bsct @dir char i; xdef

.data int init = 1 xdef

.bss int uninit xdef

.text char putchar(c); xdef

Any of above extern int out; xref
© 2003 COSMIC SoftwareProgramming Environments

Register Usage
2) A data space address is moved onto the stack if a structure or dou-
ble return area is required.

3) The function is called via a jsr _func instruction. If the called is an
@far function, the calling sequence is different. It is detailed in
the next paragraph.

4) The arguments to the function are popped off the stack.

Register Usage
Except for the return value, the registers d, y and the condition codes
are undefined on return from a function call. The return value is in d if
it is of type char widened to short, short, integer or pointer to.... The
return value is in the register d and the memory location at 2,x if it is of
type long or float. The d register holds the low order word.

Stack Model
Stack frames are maintained by each C function, using x as a frame
pointer. On entry to a function, if less than three bytes are needed for
locals, the calling sequence is replaced by a shorter sequence consisting
of a pshx instruction followed by other instructions depending on the
size required. If automatics are needed, the sequence:

will reserve <#> bytes onto the stack. This sequence is:

if the first argument is in the d register as described above. The stack
pointer is set to the beginning of the area reserved for automatic data.
This is done because of addressing mode characteristics of the
MC68HC11. The assembler symbol OFST is set to the size of the space
needed for automatics, and arguments are at OFST+4,x, OFST+6,x, and
so forth. Auto storage is on the stack at OFST-1,x and down. If no auto-
matics and no arguments are used, the stack frame is not built. To
return, the sequence:

jsr c_ents
.byte <#>

jsr c_kents
.byte <#>
© 2003 COSMIC Software Programming Environments 55

Register Usage3

56
will restore the previous context. Functions that do not have any argu-
ments or autos, and do not use any temporary storage (required to per-
form operations on structure data or type cast float data, for example)
do not reference the frame pointer x and do not stack it.

Stack Representation
The diagrams below show the stack layout at function entry func. In this
example, func has three arguments: arg1, arg2 and arg3. The first dia-
gram describes cases where arg1 is in the d register. The second dia-
gram describes cases where arg1 is not in the d register. In both cases,
arguments are assumed to be widened, so char is widened to short and
float to double.

current frame pointer is in register X
current stack pointer is in register S

The VFP (Virtual Frame Pointer) is built by the entry subroutine or
sequence, and points to the location containing the frame pointer of the
previous context (saved X). It is used to accelerate the return sequence
(lds 0,x) and to help the code generator to compute local variable
addresses. It is not built if it is not needed, depending on the function
content, and on the selection of the return sequence.

 arg1 is in d
VFP locals arg1 saved X @return arg2 arg3

arg1 not in d
VFP locals saved X @return arg1 arg2 arg3

lds 0,x
pulx
rts

OFST+0 OFST+6X

X OFST+4OFST+0
© 2003 COSMIC SoftwareProgramming Environments

Register Usage
Static Models
When using any one of the static models, the compiler creates a mem-
ory area and a symbol used to access this area. The symbol name is
obtained by appending the .L suffix to the function name. This symbol
is made public if the function is not declared with the static C keyword.
The first argument may still be passed in register, and will be stored at
the function entry. Such a function declaration:

will create the following memory layout:

locals arg1 arg2 arg3

@nostack int func(int arg1, int arg2, int arg3)

_func.L
© 2003 COSMIC Software Programming Environments 57

Heap Management Control with the C Compiler3

58
Heap Management Control with the C Compiler
The name heap designates a memory area in which are allocated and
deallocated memory blocks for temporary usage. A memory block is
allocated with the malloc() function, and is released with the free()
function. The malloc() function returns a pointer to the allocated area
which can be used until it is released by the free() function. Note that
the free() function has to be called with the pointer returned by malloc.
The heap allocation differs from a local variable allocation because its
life is not limited to the life of the function performing the allocation.

In an embedded application, the malloc-free mechanism is available
and automatically set up by the compiler environment and the library.
But it is possible to control externally the heap size and location. The
default compiler behaviour is to create a data area containing applica-
tion variables, heap and stack in the following way:

The heap start is the bss end, and is equal to the __memory symbol
defined by the linker with an appropriate +def directive. The stack
pointer is initialized by the application startup (crts.s) to an absolute
value, generally the end of available memory, or a value relative to the
end of the bss segment (for multi-tasking purposes for instance). The
heap grows upwards and the stack downwards until collision may
occur.

The heap management functions maintain a global pointer named heap
pointer, or simply HP, pointing to the heap top, and a linked list of
memory blocks, free or allocated, in the area between the heap start and
the heap top. In order to be able to easily modify the heap implementa-
tion, the heap management functions use a dedicated function to move
the heap pointer whenever necessary. The heap pointer is initialized to
the heap start: the heap is initially empty. When malloc needs some
memory and no space is available in the free list, it calls this dedicated
function named _sbreak to move the heap pointer upwards if possible.

initialized variables
 (data segment)

uninitialized variables
 (bss segment)

heap growing upward and
stack growing downward

heap starts here stack starts here
© 2003 COSMIC SoftwareProgramming Environments

Heap Management Control with the C Compiler
_sbreak will return a NULL pointer if this move is not possible (usually
this is because the heap would overlap the stack). Therefore it is possi-
ble to change the heap default location by rewriting the _sbreak func-
tion.

The default _sbreak function provided by the library is as follows:

/* SET SYSTEM BREAK
 */
void *sbreak(int size)

{
extern char _memory;
static char *_brk = NULL;/* memory break */
char *obrk, yellow[40];

if (!_brk) /* initialize on first call */
_brk = &_memory;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (yellow = _brk || _brk &_memory)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

The yellow array is used to calculate the stack pointer value to check the
heap limits. This array is declared as the last local variable, so its
address is almost equal to the stack pointer once the function has been
entered. It is declared to be 40 bytes wide to allow for some security
margin. If the new top is outside the authorized limits, the function
returns a NULL pointer, otherwise, it returns the start of the new allo-
cated area. Note that the top variable _brk is a static variable initialized
to zero (NULL pointer). It is set to the heap start on the first call. It is
also possible to initialize it directly within the declaration, but in this
case, we create an initialized variable in the data segment which needs
to be initialized by the startup. The current code avoids such a require-
ment by initializing the variable to zero (in the bss segment), which is
simply done by the standard startup sequence.
© 2003 COSMIC Software Programming Environments 59

Heap Management Control with the C Compiler3

60
Modifying The Heap Location
It is easy to modify the _sbreak function in order to handle the heap in a
separated memory area. The first example shown below handles the
heap area in a standard C array, which will be part of the application
variables.

The heap area is declared as an array of char simply named heap. The
algorithm is mainly the same, and once the new top is computed, it is
compared with the array limits. Note that the array is declared as a static
local variable. It is possible to have it declared as a static global varia-
ble. If you want it to be global, be careful on the selected name. You
should start it with a ‘_’ character to avoid any conflict with the applica-
tion variables. The modified _sbreak function using an array is as fol-
lows:

/* SET SYSTEM BREAK IN AN ARRAY
 */
#define HSIZE 800 /* heap size */

void *sbreak(int size)
{
static char *_brk = NULL;/* memory break */
static char heap[HSIZE];/* heap area */
char *obrk;

if (!_brk) /* initialize on first call */
_brk = heap;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (&heap[HSIZE] <= _brk || _brk < heap)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

If you need to place the heap array at a specific location, you need to
locate this module at a specific address using the linker options. In the
above example, the heap array will be located in the .bss segment, thus,
complicating the startup code which would need to zero two bss sec-
tions instead of one. Compiling this function, with the +nobss option,
© 2003 COSMIC SoftwareProgramming Environments

Heap Management Control with the C Compiler
will force allocation of the heap, in the data segment and you can locate
it easily with linker directives as:

+seg .data -b 0x8000 # heap start
sbreak.o # sbreak function

It is also possible to handle the heap area outside of any C object, just
by defining the heap start and end values using the linker +def direc-
tives. Assuming these symbols are named _heap_start and _heap_end
in C, it is possible to define them at link time with such directives:

+def __heap_start=0x8000# heap start
+def __heap_end=0xA000 # heap end

The modified _sbreak function is as follows:

/* SET SYSTEM BREAK IN MEMORY
 */
void *sbreak(int size)

{
extern char _heap_start, _heap_end;/* heap limits */
static char *_brk = NULL;/* memory break */
char *obrk;

if (!_brk) /* initialize on first call */
_brk = heap_start;

obrk = _brk; /* old top */
_brk += size; /* new top */
if (&_heap_end <= _brk || _brk < &_heap_start)

{ /* check boundaries */
_brk = obrk; /* restore old top */
return (NULL); /* return NULL pointer */
}

return (obrk); /* return new area start */
}

Since the initial content of the area can be undefined, the -ib option can
be specified to not include the segment in the automatic RAM initializa-
tion.

You need to add an extra ‘_’ character when defining a C symbol at link
time to match the C compiler naming conventions.

NOTE
© 2003 COSMIC Software Programming Environments 61

Heap Management Control with the C Compiler3

62
Note that it is possible to use this _sbreak function as a malloc equiva-
lent function with some restrictions. The malloc function should be
used when the allocated memory has to be released, or if the application
has no idea about the total amount of space needed. If memory can be
allocated and never released, the free mechanism is not necessary, nor
the linked list of memory blocks built by malloc. In that case, simply
rename the _sbreak function as malloc, regardless of its implementa-
tion, and you will get a very efficient and compact malloc mechanism.
You may do the renaming in the function itself, which needs to be rec-
ompiled, or by using a #define at C level, or by renaming the function at
link time with a +def directive such as:

+pri # enter a private region
+def _malloc=__sbreak # defines malloc as _sbreak
+new # close region and forget malloc
libi.h11 # load library containing _sbreak

This sequence has to be placed just before loading libraries, or before
placing the module containing the _sbreak function. The private region
is used to forget the _malloc reference once it has been aliased to
_sbreak.
© 2003 COSMIC SoftwareProgramming Environments

Data Representation
Data Representation
Data objects of type char are stored as one byte:

Char representation

Data objects of type short int, int and 16 bits pointers are stored as two
bytes, more significant byte first:

Short, Int, 16 bits Pointer

Data objects of type long integer and 32 bits pointer are stored as four
bytes, in descending order of significance:

Long, 32 bits Pointer representation

Data objects of type float and double are represented as for the pro-
posed IEEE Floating Point Standard; four bytes (for float) or eight bytes
(for double) stored in descending order of significance. The IEEE rep-
resentation is: most significant bit is one for negative numbers, and zero
otherwise; the next eight bits (for float) or eleven bits (for double) are
the characteristic, biased such that the binary exponent of the number is
the characteristic minus 126 (for float) or 1022 (for double); the remain-
ing bits are the fraction, starting with the weighted bit. If the character-
istic is zero, the entire number is taken as zero, and should be all zeros
to avoid confusing some routines that do not process the entire number.
Otherwise there is an assumed 0.5 (assertion of the weighted bit) added
to all fractions to put them in the interval [0.5, 1.0). The value of the

07

015 8 7

Most Significant Byte Less Significant Byte

031 16 15

Most Significant Byte Less Significant Byte

24 23 8 7
© 2003 COSMIC Software Programming Environments 63

Data Representation3

64
number is the fraction, multiplied by -1 if the sign bit is set, multiplied
by 2 raised to the exponent.

Float representation

Double representation

031 30

CharacteristicSign Mantissa

23 22

063 62

CharacteristicSign Mantissa

52 51
© 2003 COSMIC SoftwareProgramming Environments

CHAPTER

4

Using The Compiler
This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describes its options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

• Invoking the Compiler

• File Naming Conventions

• Generating Listings

• Generating an Error File

• C Library Support

• Descriptions of C Library Functions
© 2003 COSMIC Software Using The Compiler 65

Invoking the Compiler4

66
Invoking the Compiler
To invoke the cross compiler, type the command cx6811, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cx6811 is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix ‘.s’. You may specify multiple input files with any com-
bination of these suffixes in any order.

If you do not specify any command line options, cx6811 will compile
your <files> with the default options. It will also write the name of each
file as it is processed. It writes any error messages to STDERR.

The following command line:

compiles and assembles the acia.c C program, creating the relocatable
program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages”, lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cx6811 processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

cx6811 [options] <files>.[c|s]

cx6811 acia.c
© 2003 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+’ that is part of the option name.

Compiler Command Line Options
The cx6811 compiler accepts the following command line options, each
of which is described in detail below:

-a*> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using
The Assembler”, for the list of all accepted options.

-ce* specify a path for the error files. By default, errors are cre-
ated in the same directoy than the source files.

cx6811 [options] <files>
-a*> assembler options
-ce* path for errors
-cl* path for listings
-co* path for objects
-d*> define symbol
-ex prefix executables
-e create error file
-f* configuration file
-g*> code generator options
-i*> path for include
-l create listing
-no do not use optimizer
-o*> optimizer options
-p*> parser options
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-v verbose
-x do not execute
+*> select compiler options
© 2003 COSMIC Software Using The Compiler 67

Invoking the Compiler4

68
-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-co* specify a path for the object files. By default, objects are
created in the same directoy than the source files.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e log errors from parser in a file instead of displaying them
on the terminal screen. The error file name is defaulted to
<file>.err, and is created only if there are errors.

-ex use the compiler driver’s path as prefix to quickly locate
the executable passes. Default is to use the path variable
environment. This method is faster than the default behav-
ior but reduces the command line lenght.

-f* specify * as the name of a configuration file. This file con-
tains a list of options which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cx6811.cxf in
the compiler directory as specified in the installation proc-
ess. See Appendix B, “Modifying Compiler Operation”
for more information.

-g*> specify code generation options. Up to 60 options can be
specified. See Appendix D, “Compiler Passes”, for the list
of all accepted options.

-i*> define include path. You can define up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-no do not use the optimizer.
© 2003 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
-o*> specify optimizer options. Up to 60 options can be speci-
fied. See Appendix D, “Compiler Passes”, for the list of
all accepted options.

-p*> specify parser options. Up to 60 options can be specified.
See Appendix D, “Compiler Passes”, to get the list of all
accepted options.

-s create only assembler files and stop. Do not assemble the
files produced.

-sp create only preprocessed files and stop. Do not compile
files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

-t* specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

-v be “verbose”. Before executing a command, print the com-
mand, along with its arguments, to STDOUT. The default
is to output only the names of each file processed. Each
name is followed by a colon and newline.

-x do not execute the passes, instead write to STDOUT the
commands which otherwise would have been performed.

+*> select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 60
compiler options on the command line. The following
documents the available options as provided by the default
configuration file:

+alu generate code for processors supporting an arithmetic unit
(M and N families). This implies to use the specific librar-
ies built to support the arithmetic unit.

+c0 generate bank switching code for the 68HC11C0 proces-
sor.
© 2003 COSMIC Software Using The Compiler 69

Invoking the Compiler4

70
+debug produce debug information to be used by the debug utili-
ties provided with the compiler and by any external debug-
ger.

+fast produce fast function entry and exit sequences. For more
information, see “Fast Function Calls” in Chapter 3.

+nobss do not use the .bss section for variables allocated in exter-
nal memory. By default, such uninitialized variables are
defined into the .bss section. This option is useful to force
all variables to be grouped into a single section.

+nocst output literals and contants in the code section .text instead
of the specific section .const.

+nostk force all functions not to use the stack. The +st options
should be used to select the compiler behaviour. For more
information, see “Stack Usage” in Chapter 3.

+nowiden do not widen char and float arguments. By default, char
arguments are promoted to int before to be passed as argu-
ment.

+rev reverse the bitfield filling order. By default, bitfields are
filled from the Less Significant Bit (LSB) towards the
Most Significant Bit (MSB) of a memory cell. If the +rev
option is specified, bitfields are filled from the msb to the
lsb.

+sprec force all floating point arithmetic to single precision. If this
option is enabled, all floats, doubles and long doubles are
treated as float, and calculation are made in single preci-
sion.

+st0 enable static model 0. Functions declared with the @nos-
tack modifier will use a private area located in the .bss sec-
tion for their arguments and local variables. For more
information, see “Stack Usage” in Chapter 3.
© 2003 COSMIC SoftwareUsing The Compiler

Invoking the Compiler
+st1 enable static model 1. Functions declared with the @nos-
tack modifier will use a private area located in the .bsct
section for their arguments and local variables. For more
information, see “Stack Usage” in Chapter 3.

+st2 enable static model 2. Functions declared with the @nos-
tack modifier will use a shared area located in the .bss sec-
tion for their arguments and local variables. For more
information, see “Stack Usage” in Chapter 3.

+st3 enable static model 3. Functions declared with the @nos-
tack modifier will use a shared area located in the .bsct
section for their arguments and local variables. For more
information, see “Stack Usage” in Chapter 3.

+zpage force all data to be defined into the .bsct section. This
option assumes that the full application declares less than
the available space in the .bsct section. The linker should
be configured to check the size. For more information, see
“Placing Data Objects in The Zero Page Section” in
Chapter 3.
© 2003 COSMIC Software Using The Compiler 71

File Naming Conventions4

72
File Naming Conventions
The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted as input or generated as output.

Program Input File Name Output File Name

cp6811 <file>.c <file>.1

cg6811 <file>.1 <file>.2

co6811 <file>.2 <file>.s

error listing <file>.c <file>.err

assembler listing <file>.[c|s] <file>.ls

C header files <file>.h

ca6811 <file>.s <file>.o

source listing <file>.s <file>.ls

clnk <file>.o name required

cbank <file> STDOUT

chex <file> STDOUT

clabs <file.h12> <files>.la

clib <file> name required

cobj <file> STDOUT

cv695 <file> <file>.695
© 2003 COSMIC SoftwareUsing The Compiler

Generating Listings
Generating Listings
You can generate listings of the output of any (or all) the compiler
passes by specifying the -l option to cx6811. You can locate the listing
file in a different directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C source file acia.c with the -l option:

Generating an Error File
You can generate a file containing all the error messages output by the
parser by specifying the -e option to the cx6811 compiler. You can
locate the error file in a different directory by using the -ce option. For
example, you would type:

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Return Status
cx6811 returns success if it can process all files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

Examples
To echo the names of each program that the compiler runs:

To save the intermediate files created by the code generator and halt
before the assembler:

cx6811 -l acia.c

cx6811 -e prog.c

cx6811 -v file.c

cx6811 -s file.c
© 2003 COSMIC Software Using The Compiler 73

C Library Support4

74
C Library Support
This section describes the facilities provided by the C library. The C
cross compiler for MC68HC11 includes all useful functions for pro-
grammers writing applications for ROM-based systems.

How C Library Functions are Packaged
The functions in the C library are packaged in three separate sub-librar-
ies; one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library) and one that pro-
vides full floating point support (the floating point library). If your
application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
the integer library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and
entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library as it is recog-
nized by the compiler itself.

Linking Libraries with Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

Integer Library Functions
The following table lists the C library functions in the integer library.

_checksum islower memset strcspn
abs isprint printf strlen
atoi ispunct putchar strncat
atol isqrt puts strncmp
calloc isspace rand strncpy
div isupper realloc strpbrk
eepcpy isxdigit sbreak strrchr
eepset labs scanf strspn
free ldiv setjmp strstr
getchar longjmp sprintf strtol
gets lsqrt srand tolower
© 2003 COSMIC SoftwareUsing The Compiler

C Library Support
isalnum malloc sscanf toupper
isalpha memchr strcat vprintf
iscntrl memcmp strchr vsprintf
isdigit memcpy strcmp
isgraph memmove strcpy

Floating Point Library Functions
The following table lists the C library functions in the float library.

acos exp modf sscanf
asin fabs pow strtod
atan floor printf tan
atan2 fmod scanf tanh
atof frexp sin vprintf
ceil ldexp sinh vsprintf
cos log sprintf

Common Input/Output Functions
Six of the functions that perform stream input/output are included in
both the integer and floating point libraries. The functionalities of the
versions in the integer library are a subset of the functionalities of their
floating point counterparts. The versions in the integer library cannot
print or manipulate floating point numbers. These functions are: printf,
scanf, sprintf, sscanf, vprintf and vsprintf.

Functions Implemented as Macros
Five of the functions in the C library are actually implemented as “mac-
ros”. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are
defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: max, min, va_arg, va_end, and
va_start.

Including Header Files
If your application calls a C library function, you must include the
header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that all the
expected arguments are properly evaluated. You do this by writing a
© 2003 COSMIC Software Using The Compiler 75

C Library Support4

76
preprocessor directive of the form:

in your program, where <header_name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<io.h> - Header file for input-output registers. Each register has an
upper-case name which matches the standard Motorola definition. They
are mapped at a base address defaulted to 0x1000. Specifics I/O header
files are provided for the MC68HC11K4, MC68HC11F1 and
MC68HC11C0 respectively called iok4.h, iof1.h and ioc0.h.

<limits.h> - Header file for limit constants of the compiler.

<math.h> - Header file for mathematical functions: acos, asin, atan,
atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, ldexp, log, log10,
modf, pow, sin, sinh, sqrt, tan and tanh.

<setjmp.h> - Header file for nonlocal jumps: setjmp and longjmp

<stdarg.h> - Header file for walking argument lists: va_arg, va_end
and va_start. Use these macros with any function you write that must
accept a variable number of arguments.

<stddef.h> - Header file for types: size_t, wchar_t and ptrdiff_t.

<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts and sprintf.

#include <header_name>
© 2003 COSMIC SoftwareUsing The Compiler

Descriptions of C Library Functions
<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
calloc, div, exit, free, labs, ldiv, malloc, rand, realloc, srand, strtod, str-
tol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file, since int is the function
return type that the compiler assumed by default, are: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, sbreak, tolower and toupper.

Descriptions of C Library Functions
The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.
© 2003 COSMIC Software Using The Compiler 77

C Library - _asm

_asm

4

78
Description
Generate inline assembly code

Syntax

Function
_asm generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. If extra arguments
are specified, they are processed as for a standard function. If argu-
ments are stacked, they are popped off just after the inline code pro-
duced.

For more information, see “Inserting Inline Assembly Instructions” in
Chapter 3.

Return Value
Nothing, unless _asm() is used in an expression. In that case, normal
return conventions must be followed. See “Register Usage” in Chapter
3.

Example
The sequence tsx; pshx, may be generated by the following call:

_asm(“\ttsx\n\tpshx\n”);

Notes
_asm() is not packaged in any library. It is recognized (and its argument
passed unchanged) by the compiler itself.

/* no header file need be included */
_asm(<string constant>, ...)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - _wsetup

_wsetup

Description

Initialize K4 window registers

Syntax

Function
_wsetup initializes the window mechanism of the 68HC11K4 proces-
sor. It uses the external symbol __wbase to know the starting address of
the window, and sets the first window for a 8K window starting win-
dow from that address. This symbol is usually defined at link time.

For more information, see “Calling a Bank Switched Function” in
Chapter 3

Return Value
Nothing

Example
To set the window mechanism at the beginning of the application:

_wsetup();

Notes
_wsetup() is packaged in the machine library.

/* no header file need to be included */
_wsetup(void)
© 2003 COSMIC Software Using The Compiler 79

C Library - abort

abort

4

80
Description
Abort program execution

Syntax

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also
exit

Notes
abort is a macro equivalent to the function name exit.

#include <stdlib.h>
void abort(void)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - abs

abs

Description

Find absolute value

Syntax

Function
abs obtains the absolute value of i. No check is made to see that the
result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “”);

See Also
labs, fabs

Notes
abs is packaged in the integer library.

#include <stdlib.h>
int abs(int i)
© 2003 COSMIC Software Using The Compiler 81

C Library - acos

acos

4

82
Description
Arccosine

Syntax

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If x is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also
asin, atan, atan2

Notes
acos is packaged in the floating point library.

#include <math.h>
double acos(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - asin

asin

Description

Arcsine

Syntax

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If x is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

#include <math.h>
double asin(double x)
© 2003 COSMIC Software Using The Compiler 83

C Library - atan

atan

4

84
Description
Arctangent

Syntax

Function
atan computes the angle in radians; the tangent of which is x, atan com-
putes the angle in radians; the tangent of which is x, to full double preci-
sion.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
a double floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of a vector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

#include <math.h>
double atan(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - atan2

atan2

Description

Arctangent of y/x

Syntax

Function
atan2 computes the angle in radians the tangent of which is y/x to full
double precision. If y is negative, the result is negative. If x is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed
as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of a vector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also
acos, asin, atan

Notes
atan2 is packaged in the floating point library.

#include <math.h>
double atan2(double y, double x)
© 2003 COSMIC Software Using The Compiler 85

C Library - atof

atof

4

86
Description
Convert buffer to double

Syntax

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

#include <stdlib.h>
double atof(char *nptr)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - atoi

atoi

Description

Convert buffer to integer

Syntax

Function
atoi converts the string at nptr into an integer. The string is taken as the
text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is l or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to an int at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

#include <stdlib.h>
int atoi(char *nptr)
© 2003 COSMIC Software Using The Compiler 87

C Library - atol

atol

4

88
Description
Convert buffer to long

Syntax

Function
atol converts the string at nptr into a long integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is l or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

#include <stdlib.h>
long atol(char *nptr)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - _checksum

_checksum

Description

Verify the recorded checksum

Syntax

Function
_checksum scans the descriptor built by the linker and controls that the
computed checksum is equal to the one expected.

For more information, see “Checksum Computation” in Chapter 6.

Return Value
_checksum returns 0 if the checksum is correct, or a value different of 0
otherwise.

Example
if (_checksum())

abort();

Notes
The descriptor is built by the linker only if the _checksum function is
called by the application, even if there are segments marked with the
-ck option.

_checksum is packaged in the integer library.

int _checksum()
© 2003 COSMIC Software Using The Compiler 89

C Library - calloc

calloc

4

90
Description
Allocate and clear space on the heap

Syntax

Function
calloc allocates space on the heap for an item of size nbytes, where
nbytes = nelem * elsize. The space allocated is guaranteed to be at least
nbytes long, starting from the pointer returned, which is guaranteed to
be on a proper storage boundary for an object of any type. The heap is
grown as necessary. If space is exhausted, calloc returns a null pointer.
The pointer returned may be assigned to an object of any type without
casting. The allocated space is initialized to zero.

Return Value
calloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL.

Example
To allocate an array of ten doubles:

double *pd;
pd = calloc(10, sizeof (double));

See Also
free, malloc, realloc

Notes
calloc is packaged in the integer library.

#include <stdlib.h>
void *calloc(int nelem, int elsize)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - ceil

ceil

Description

Round to next higher integer

Syntax

Function
ceil computes the smallest integer greater than or equal to x.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed as a
double floating value.

Example
x ceil(x)

5.1 6.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -5.0

See Also
floor

Notes
ceil is packaged in the floating point library.

#include <math.h>
double ceil(double x)
© 2003 COSMIC Software Using The Compiler 91

C Library - cos

cos

4

92
Description
Cosine

Syntax

Function
cos computes the cosine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of cos is 1.

Return Value
cos returns the nearest internal representation to cos(x) in the range
[0, pi], expressed as a double floating value. A large argument may
return a meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
sin, tan

Notes
cos is packaged in the floating point library.

#include <math.h>
double cos(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - cosh

cosh

Description

Hyperbolic cosine

Syntax

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a
double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moivre's theorem to compute (cosh x + sinh x) to the nth
power:

demoivre = cosh(n * x) + sinh(n * x);

See Also
exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

#include <math.h>
double cosh(double x)
© 2003 COSMIC Software Using The Compiler 93

C Library - div

div

4

94
Description
Divide with quotient and remainder

Syntax

Function
div divides the integer numer by the integer denom and returns the quo-
tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

div_t result;

result = div(time, 60);
min = result.quot;
sec = result.rem;

See Also
ldiv

Notes
div is packaged in the integer library.

#include <stdlib.h>
div_t div(int numer, int denom)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - eepcpy

eepcpy

Description

Copy a buffer to an eeprom buffer

Syntax

Function
eepcpy copies the first n characters starting at location s2 into the eep-
rom buffer beginning at s1.

Return Value
eepcpy returns s1.

Example
To place “first string, second string” in eepbuf[]:

eepcpy(eepbuf, “first string”, 12);
eepcpy(eepbuf + 13, “, second string”, 15);

See Also
eepset, eepera

Notes
eepcpy is packaged in the integer library.

#include <string.h>
void *eepcpy(void *s1, void *s2, unsigned int n)
© 2003 COSMIC Software Using The Compiler 95

C Library - eepera

eepera

4

96
Description
Erase the full eeprom space

Syntax

Function
eepera erases the full eeprom space with the global erase sequence. It
does not erase the config register.

Return Value
Nothing.

Example
To erase the full eeprom space:

eepera();

See Also
eepset, eepcpy

Notes
eepera is packaged in the machine library.

void eepera(void)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - eepset

eepset

Description

Propagate fill character throughout eeprom buffer

Syntax

Function
eepset floods the n character buffer starting at eeprom location s with
fill character c. The function waits for all bytes to be programmed.

Return Value
eepset returns s.

Example
To flood a 512 byte eeprom buffer with NULs:

eepset(eepbuf, ’\0’, BUFSIZ);

See Also
eepcpy, eepera

Notes
eepset is packaged in the integer library.

#include <string.h>
void *eepset(void *s, int c, unsigned int n)
© 2003 COSMIC Software Using The Compiler 97

C Library - exit

exit

4

98
Description
Exit program execution

Syntax

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the call to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit is in the startup module.

#include <stdlib.h>
void exit(int status)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - exp

exp

Description

Exponential

Syntax

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a
double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(x) - exp(-x)) / 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

#include <math.h>
double exp(double x)
© 2003 COSMIC Software Using The Compiler 99

C Library - fabs

fabs

4

100
Description
Find double absolute value

Syntax

Function
fabs obtains the absolute value of x.

Return Value
fabs returns the absolute value of x, expressed as a double floating
value.

Example
x fabs(x)

5.0 5.0
0.0 0.0
-3.7 3.7

See Also
abs, labs

Notes
fabs is packaged in the floating point library.

#include <math.h>
double fabs(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - floor

floor

Description

Round to next lower integer

Syntax

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a
double floating value.

Example
x floor(x)

5.1 5.0
5.0 5.0
0.0 0.0

-5.0 -5.0
-5.1 -6.0

See Also
ceil

Notes
floor is packaged in the floating point library.

#include <math.h>
double floor(double x)
© 2003 COSMIC Software Using The Compiler 101

C Library - fmod

fmod

4

102
Description
Find double modulus

Syntax

Function
fmod computes the floating point remainder of x / y, to full double pre-
cision. The return value of f is determined using the formula:

f = x - i * y

where i is some integer, f is the same sign as x, and the absolute value of
f is less than the absolute value of y.

Return Value
fmod returns the value of f expressed as a double floating value. If y is
zero, fmod returns zero.

Example
x y fmod(x, y)

5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0

-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

#include <math.h>
double fmod(double x, double y)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - free

free

Description

Free space on the heap

Syntax

Function
free returns an allocated cell to the heap for subsequence reuse. The cell
pointer ptr must have been obtained by an earlier calloc, malloc, or
realloc call; otherwise the heap will become corrupted. free does its
best to check for invalid values of ptr. A NULL value for ptr is explic-
itly allowed, however, and is ignored.

Return Value
Nothing.

Example
To give back an allocated area:

free(pd);

See Also
calloc, malloc, realloc

Notes
No effort is made to lower the system break when storage is freed, so it
is quite possible that earlier activity on the heap may cause problems
later on the stack.

free is packaged in the integer library.

#include <stdlib.h>
void free(void *ptr)
© 2003 COSMIC Software Using The Compiler 103

C Library - frexp

frexp

4

104
Description
Extract fraction from exponent part

Syntax

Function
frexp partitions the double at val, which should be non-zero, into a frac-
tion in the interval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractional portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val as the return
value of the function, and writes the exponent at *exp.

Example
To implement the sqrt(x) function:

double sqrt(double x)
{
extern double newton(double);
int n;

x = frexp(x, &n);
x = newton(x);
if (n & 1)

x *= SQRT2;
return (ldexp(x, n / 2));
}

See Also
ldexp

Notes
frexp is packaged in the floating point library.

#include <math.h>
double frexp(double val, int *exp)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - getchar

getchar

Description

Get character from input stream

Syntax

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or a read error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes
getchar is packaged in the integer library.

#include <stdio.h>
int getchar(void)
© 2003 COSMIC Software Using The Compiler 105

C Library - gets

gets

4

106
Description
Get a text line from input stream

Syntax

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
gets returns s if successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
puts

Notes
There is no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

#include <stdio.h>
char *gets(char *s)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - isalnum

isalnum

Description

Test for alphabetic or numeric character

Syntax

Function
isalnum tests whether c is an alphabetic character (either upper or
lower case), or a decimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric
character; otherwise the value returned is zero.

Example
To test for a valid C identifier:

if (isalpha(*s) || *s == '_')
for (++s; isalnum(*s) || *s == '_'; ++s)

;

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnum is packaged in the integer library.

#include <ctype.h>
int isalnum(int c)
© 2003 COSMIC Software Using The Compiler 107

C Library - isalpha

isalpha

4

108
Description
Test for alphabetic character

Syntax

Function
isalpha tests whether c is an alphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an alphabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && !isalpha(*first))
++first;

for (last = first; isalpha(*last); ++last)
;

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

#include <ctype.h>
int isalpha(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - iscntrl

iscntrl

Description

Test for control character

Syntax

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-
nary control character (less than 040 in ASCII).

Return Value
iscntrl returns nonzero if c is a control character; otherwise the value is
zero.

Example
To map control characters to percent signs:

for (; *s; ++s)
if (iscntrl(*s))

*s = '%';

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

#include <ctype.h>
int iscntrl(int c)
© 2003 COSMIC Software Using The Compiler 109

C Library - isdigit

isdigit

4

110
Description
Test for digit

Syntax

Function
isdigit tests whether c is a decimal digit.

Return Value
isdigit returns nonzero if c is a decimal digit; otherwise the value
returned is zero.

Example
To convert a decimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - '0';

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

#include <ctype.h>
int isdigit(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - isgraph

isgraph

Description

Test for graphic character

Syntax

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if c is a graphic character. Otherwise the value
returned is zero.

Example
To output only graphic characters:

for (; *s; ++s)
if (isgraph(*s))

putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

#include <ctype.h>
int isgraph(int c)
© 2003 COSMIC Software Using The Compiler 111

C Library - islower

islower

4

112
Description
Test for lower-case character

Syntax

Function
islower tests whether c is a lower-case alphabetic character.

Return Value
islower returns nonzero if c is a lower-case character; otherwise the
value returned is zero.

Example
To convert to upper-case:

if (islower(c))
c += 'A' - 'a'; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

#include <ctype.h>
int islower(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - isprint

isprint

Description

Test for printing character

Syntax

Function
isprint tests whether c is any printing character. Printing characters are
all characters between a space (040 in ASCII) and a tilde ‘~’ character
(0176 in ASCII).

Return Value
isprint returns nonzero if c is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)
if (isprint(*s))

putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

#include <ctype.h>
int isprint(int c)
© 2003 COSMIC Software Using The Compiler 113

C Library - ispunct

ispunct

4

114
Description
Test for punctuation character

Syntax

Function
ispunct tests whether c is a punctuation character. Punctuation charac-
ters include any printing character except space, a digit, or a letter.

Return Value
ispunct returns nonzero if c is a punctuation character; otherwise the
value returned is zero.

Example
To collect all punctuation characters in a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))

buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

#include <ctype.h>
int ispunct(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - isqrt

isqrt

Description

Integer square root

Syntax

Function
isqrt obtains the integral square root of the unsigned int i.

Return Value
isqrt returns the closest integer smaller or equal to the square root of i,
expressed as an unsigned int.

Example
To use isqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = isqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
lsqrt, sqrt

Notes
isqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int isqrt(unsigned int i)
© 2003 COSMIC Software Using The Compiler 115

C Library - isspace

isspace

4

116
Description
Test for whitespace character

Syntax

Function
isspace tests whether c is a whitespace character. Whitespace characters
are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v’), form feed
(‘\f’), carriage return (‘\r’), and space (‘ ’).

Return Value
isspace returns nonzero if c is a whitespace character; otherwise the
value returned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++s;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

#include <ctype.h>
int isspace(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - isupper

isupper

Description

Test for upper-case character

Syntax

Function
isupper tests whether c is an upper-case alphabetic character.

Return Value
isupper returns nonzero if c is an upper-case character; otherwise the
value returned is zero.

Example
To convert to lower-case:

if (isupper(c))
c += 'a' - 'A'; /* also see tolower() */

See Also
isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

/* no header file need be included */
int isupper(int c)
© 2003 COSMIC Software Using The Compiler 117

C Library - isxdigit

isxdigit

4

118
Description
Test for hexadecimal digit

Syntax

Function
isxdigit tests whether c is a hexadecimal digit, i.e. in the set
[0123456789abcdefABCDEF].

Return Value
isxdigit returns nonzero if c is a hexadecimal digit; otherwise the value
returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 10 + *s - '0';
else

sum = sum * 10 + tolower(*s) + (10 - 'a');

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

#include <ctype.h>
int isxdigit(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - labs

labs

Description

Find long absolute value

Syntax

Function
labs obtains the absolute value of l. No check is made to see that the
result can be properly represented.

Return Value
labs returns the absolute value of l, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “”);

See Also
abs, fabs

Notes
labs is packaged in the integer library.

#include <stdlib.h>
long labs(long l)
© 2003 COSMIC Software Using The Compiler 119

C Library - ldexp

ldexp

4

120
Description
Scale double exponent

Syntax

Function
ldexp multiplies the double x by two raised to the integer power exp.

Return Value
ldexp returns the double result x * (1 << exp) expressed as a double
floating value. If a range error occurs, ldexp returns HUGE_VAL.

Example
x exp ldexp(x, exp)

1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 0 0.0

See Also
frexp, modf

Notes
ldexp is packaged in the floating point library.

#include <math.h>
double ldexp(double x, int exp)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - ldiv

ldiv

Description

Long divide with quotient and remainder

Syntax

Function
ldiv divides the long integer numer by the long integer denom and
returns the quotient and the remainder in a structure of type ldiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
ldiv returns a structure of type ldiv_t containing both quotient and
remainder.

Example
To get minutes and seconds from a delay in seconds:

ldiv_t result;
result = ldiv(time, 60L);
min = result.quot;
sec = result.rem;

See Also
div

Notes
ldiv is packaged in the integer library.

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom)
© 2003 COSMIC Software Using The Compiler 121

C Library - log

log

4

122
Description
Natural logarithm

Syntax

Function
log computes the natural logarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a
double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

#include <math.h>
double log(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - log10

log10

Description

Common logarithm

Syntax

Function
log10 computes thecommon log of x to full double precision by com-
puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, a range error will occur.

Return Value
log10 returns the nearest internal representation to log10 x, expressed as
a double floating value. If the input argument is less than or equal to
zero, log10 returns zero.

Example
To determine the number of digits in x, where x is a positive integer
expressed as a double:

ndig = log10(x) + 1;

See Also
log

Notes
log10 is packaged in the floating point library.

#include <math.h>
double log10(double x)
© 2003 COSMIC Software Using The Compiler 123

C Library - longjmp

longjmp

4

124
Description
Restore calling environment

Syntax

Function
longjmp restores the environment saved in env by setjmp. If env has not
been set by a call to setjmp, or if the caller has returned in the mean-
time, the resulting behavior is unpredictable.

All accessible objects have their values restored when longjmp is
called, except for objects of storage class register, the values of which
have been changed between the setjmp and longjmp calls.

Return Value
When longjmp returns, program execution continues as if the corre-
sponding call to setjmp had returned the value val. longjmp cannot force
setjmp to return the value zero. If val is zero, setjmp returns the value
one.

Example
You can write a generic error handler as:

void handle(int err)
{
extern jmp_buf env;
longjmp(env, err); /* return from setjmp */
}

See Also
setjmp

Notes
longjmp is packaged in the integer library.

#include <setjmp.h>
void longjmp(jmp_buf env, int val)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - lsqrt

lsqrt

Description

Long integer square root

Syntax

Function
lsqrt obtains the integral square root of the unsigned long l.

Return Value
lsqrt returns the closest integer smaller or equal to the square root of l,
expressed as an unsigned int.

Example
To use lsqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = lsqrt(n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, sqrt

Notes
lsqrt is packaged in the integer library.

#include <stdlib.h>
unsigned int lsqrt(unsigned long l)
© 2003 COSMIC Software Using The Compiler 125

C Library - malloc

malloc

4

126
Description
Allocate space on the heap

Syntax

Function
malloc allocates space on the heap for an item of size nbytes. The space
allocated is guaranteed to be at least nbytes long, starting from the
pointer returned, which is guaranteed to be on a proper storage bound-
ary for an object of any type. The heap is grown as necessary. If space is
exhausted, malloc returns a null pointer.

Return Value
malloc returns a pointer to the start of the allocated cell if successful;
otherwise it returns NULL. The pointer returned may be assigned to an
object of any type without casting.

Example
To allocate an array of ten doubles:

double *pd;
pd = malloc(10 * sizeof *pd);

See Also
calloc, free, realloc

Notes
malloc is packaged in the integer library.

#include <stdlib.h>
void *malloc(unsigned int nbytes)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - max

max

Description

Test for maximum

Syntax

Function
max obtains the maximum of its two arguments, a and b. Since max is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a < b) ? b : a), suitably paren-
thesized.

Example
To set a new maximum level:

hiwater = max(hiwater, level);

See Also
min

Notes
max is an extension to the proposed ANSI C standard.

max is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, max
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated other than once.

#include <stdlib.h>
max(a,b)
© 2003 COSMIC Software Using The Compiler 127

C Library - memchr

memchr

4

128
Description
Scan buffer for character

Syntax

Function
memchr looks for the first occurrence of a specific character c in an n
character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches c, or NULL
if no character matches.

Example
To map keybuf[] characters into subst[] characters:

if ((t = memchr(keybuf, *s, KEYSIZ)) != NULL)
*s = subst[t - keybuf];

See Also
strchr, strcspn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

#include <string.h>
void *memchr(void *s, int c, unsigned int n)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - memcmp

memcmp

Description

Compare two buffers for lexical order

Syntax

Function
memcmp compares two text buffers, character by character, for lexical
order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, "include", 7) == 0)
doinclude();

See Also
strcmp, strncmp

Notes
memcmp is packaged in the integer library.

#include <string.h>
int memcmp(void *s1, void *s2, unsigned int n)
© 2003 COSMIC Software Using The Compiler 129

C Library - memcpy

memcpy

4

130
Description
Copy one buffer to another

Syntax

Function
memcpy copies the first n characters starting at location s2 into the
buffer beginning at s1.

Return Value
memcpy returns s1.

Example
To place “first string, second string” in buf[]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, ", second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is packaged in the integer library.

#include <string.h>
void *memcpy(void *s1, void *s2, unsigned int n)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - memmove

memmove

Description

Copy one buffer to another

Syntax

Function
memmove copies the first n characters starting at location s2 into the
buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns s1.

Example
To shift an array of characters:

memmove(buf, &buf[5], 10);

See Also
memcpy

Notes
memmove is packaged in the integer library.

#include <string.h>
void *memmove(void *s1, void *s2, unsigned int n)
© 2003 COSMIC Software Using The Compiler 131

C Library - memset

memset

4

132
Description
Propagate fill character throughout buffer

Syntax

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULs:

memset(buf,'\0', BUFSIZ);

Notes
memset is packaged in the integer library.

#include <string.h>
void *memset(void *s, int c, unsigned int n)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - min

min

Description

Test for minimum

Syntax

Function
min obtains the minimum of its two arguments, a and b. Since min is
implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a : b), suitably paren-
thesized.

Example
To set a new minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is a macro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, min
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated more than once.

#include <stdlib.h>
min(a,b)
© 2003 COSMIC Software Using The Compiler 133

C Library - modf

modf

4

134
Description
Extract fraction and integer from double

Syntax

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at *pd.

Example
val *pd modf(val, *pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0

-1.4 -1 -0.4

See Also
frexp, ldexp

Notes
modf is packaged in the floating point library.

#include <math.h>
double modf(double val, double *pd)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - pow

pow

Description

Raise x to the y power

Syntax

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-
ble floating value. If x is zero and y is less than or equal to zero, or if x is
negative and y is not an integer, pow returns zero.

Example
x y pow(x, y)

2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 0

-1.0 2.0 1.0
-1.0 2.1 0

See Also
exp

Notes
pow is packaged in the floating point library.

#include <math.h>
double pow(double x, double y)
© 2003 COSMIC Software Using The Compiler 135

C Library - printf

printf

4

136
Description
Output formatted arguments to stdout

Syntax

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers
The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%’, the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - a decimal number which optionally specifies a mini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding is with spaces unless the
field width digit string starts with zero, in which case the padding is
with zeros.

#include <stdio.h>
int printf(char *fmt,...)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - printf
<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, o, u, x, and X conversions, the
number of digits to appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by a decimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, o, u, x, or X conversion
character applies to a short int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, it is ignored.

l - optionally specifies that the d, i, o, u, x, and X conversion character
applies to a long int or unsigned long int argument. It specifies a long or
far pointer argument if used with the p conversion character. If the l
appears with any other conversion character, it is ignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to a long double argument. If the L appears with any
other conversion character, it is ignored.

<conversion character> - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’
instead of a digit string. In this case, an int argument supplies the field
width or precision. The arguments supplying field width must appear
before the optional argument to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. A nega-
tive precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

space - a space will be prepended if the first character of a signed con-
version is not a sign. This flag will be ignored if space and + flags are
both specified.
© 2003 COSMIC Software Using The Compiler 137

C Library - printf4

138
- result is to be converted to an “alternate form”. For c, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e, E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.

- - result of conversion will be left justified within the field.

The <conversion character> is one of the following:

% - a ‘%’ is printed. No argument is converted.

c - the least significant byte of the int argument is converted to a char-
acter and printed.

d, i, o, u, x, X - the int argument is converted to signed decimal (d or
i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.

f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is
© 2003 COSMIC SoftwareUsing The Compiler

C Library - printf
equal to the precision specification. If the precision is missing, it is
taken as 6. If the precision is explicitly zero, no decimal point appears.
If a decimal point appears, at least one digit appears before it.

g, G - the double argument is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
e will be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; a decimal point appears only if it is followed by a digit.

n - the argument is taken to be an int * pointer to an integer into which
is written the number of characters written to the output stream so far by
this call to printf. No argument is converted.

p - the argument is taken to be a void * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

s - the argument is taken to be a char * pointer to a string. Characters
from the string are written up to, but not including, the terminating
NUL, or until the number of characters indicated by the precision are
written. If the precision is missing, it is taken to be arbitrarily large, so
all characters before the first NUL are printed.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

If any argument is or points to an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of a field;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.

Return Value
printf returns the number of characters transmitted, or a negative
number if a write error occurs.
© 2003 COSMIC Software Using The Compiler 139

C Library - printf4

140
Notes
A call with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is a double with the value 5100.53:

printf(“%8.2f\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiers are invalid: e, E, f, g and G. The L modifier is also invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
is ignored and no special message is generated.
© 2003 COSMIC SoftwareUsing The Compiler

C Library - putchar

putchar

Description

Put a character to output stream

Syntax

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If a write error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes
putchar is packaged in the integer library.

#include <stdio.h>
int putchar(c)
© 2003 COSMIC Software Using The Compiler 141

C Library - puts

puts

4

142
Description
Put a text line to output stream

Syntax

Function
puts copies characters from the buffer starting at s to the output stream
and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if a write error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
;

See Also
gets

Notes
puts is packaged in the integer library.

#include <stdio.h>
int puts(char *s)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - rand

rand

Description

Generate pseudo-random number

Syntax

Function
rand computes successive pseudo-random integers in the range
[0, 32767], using a linear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice()

{
return (rand() % 6 + 1);
}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

#include <stdlib.h>
int rand(void)
© 2003 COSMIC Software Using The Compiler 143

C Library - realloc

realloc

4

144
Description
Reallocate space on the heap

Syntax

Function
realloc grows or shrinks the size of the cell pointed to by ptr to the size
specified by nbytes. The contents of the cell will be unchanged up to the
lesser of the new and old sizes. The cell pointer ptr must have been
obtained by an earlier calloc, malloc, or realloc call; otherwise the heap
will become corrupted.

Return Value
realloc returns a pointer to the start of the possibly moved cell if suc-
cessful. Otherwise realloc returns NULL and the cell and ptr are
unchanged. The pointer returned may be assigned to an object of any
type without casting.

Example
To adjust p to be n doubles in size:

p = realloc(p, n * sizeof(double));

See Also
calloc, free, malloc

Notes
realloc is packaged in the integer library.

#include <stdlib.h>
void *realloc(void *ptr, unsigned int nbytes)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - sbreak

sbreak

Description

Allocate new memory

Syntax

Function
sbreak modifies the program memory allocation as necessary, to make
available at least size contiguous bytes of new memory, on a storage
boundary adequate for representing any type of data. There is no guar-
antee that successive calls to sbreak will deliver contiguous areas of
memory.

Return Value
sbreak returns a pointer to the start of the new memory if successful;
otherwise the value returned is NULL.

Example
To buy space for an array of symbols:

if (!(p = sbreak(nsyms * sizeof (symbol))))
remark(“not enough memory!”, NULL);

Notes
sbreak is packaged in the integer library.

sbreak is an extension to the ANSI C standard.

/* no header file need be included */
void *sbreak(unsigned int size)
© 2003 COSMIC Software Using The Compiler 145

C Library - scanf

scanf

4

146
Description
Read formatted input

Syntax

Function
scanf reads formatted input from the output stream using the format
string at fmt and the arguments specified by ..., as described below.

scanf uses getchar to read each character.

The behavior is unpredictable if there are insufficient argument pointers
for the format. If the format string is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored.

Format Specifiers
The format string may contain:

• any number of spaces, horizontal tabs, and newline characters
which cause input to be read up to the next non-whitespace char-
acter, and

• ordinary characters other than ‘%’ which must match the next
character of the input stream.

Each <conversion specification>, the definition of which follows, con-
sists of the character ‘%’, an optional assignment-suppressing character
‘*’, an optional maximum field width, an optional h, l or L indicating
the size of the receiving object, and a <conversion character>,
described below.

A conversion specification directs the conversion of the next input
field. The result is placed in the object pointed to by the subsequent
argument, unless assignment suppression was indicated by a ‘*’. An

#include <stdio.h>
int scanf(char *fmt,...)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - scanf
input field is a string of non-space characters; it extends to the next con-
flicting character or until the field width, if specified, is exhausted.

The conversion specification indicates the interpretation of the input
field; the corresponding pointer argument must be a restricted type. The
<conversion character> is one of the following:

% - a single % is expected in the input at this point; no assignment
occurs.

If the character after ‘%’ is not a valid conversion character, the behav-
ior is undefined.

c - a character is expected; the subsequent argument must be of type
pointer to char. The normal behavior (skip over space characters) is
suppressed in this case; to read the next non-space character, use %1s.
If a field width is specified, the corresponding argument must refer to a
character array; the indicated number of characters is read.

d - a decimal integer is expected; the subsequent argument must be a
pointer to integer.

e, f, g - a float is expected; the subsequent argument must be a pointer
to float. The input format for floating point numbers is an optionally
signed sequence of digits, possibly containing a decimal point, followed
by an optional exponent field consisting of an E or e, followed by an
optionally signed integer.

i - an integer is expected; the subsequent argument must be a pointer to
integer. If the input field begins with the characters 0x or 0X, the field is
taken as a hexadecimal integer. If the input field begins with the charac-
ter 0, the field is taken as an octal integer. Otherwise, the input field is
taken as a decimal integer.

n - no input is consumed; the subsequent argument must be an int *
pointer to an integer into which is written the number of characters read
from the input stream so far by this call to scanf.

o - an octal integer is expected; the subsequent argument must be a
pointer to integer.
© 2003 COSMIC Software Using The Compiler 147

C Library - scanf4

148
p - a pointer is expected; the subsequent argument must be a void *
pointer. The format of the input field should be the same as that pro-
duced by the %p conversion of printf. On any input other than a value
printed earlier during the same program execution, the behavior of the
%p conversion is undefined.

s - a character string is expected; the subsequent argument must be a
char * pointer to an array large enough to hold the string and a terminat-
ing NUL, which will be added automatically. The input field is termi-
nated by a space, a horizontal tab, or a newline, which is not part of the
field.

u - an unsigned decimal integer is expected; the subsequent argument
must be a pointer to integer.

x - a hexadecimal integer is expected; a subsequent argument must be a
pointer to integer.

[- a string that is not to be delimited by spaces is expected; the subse-
quent argument must be a char * just as for %s. The left bracket is fol-
lowed by a set of characters and a right bracket; the characters between
the brackets define a set of characters making up the string. If the first
character is not a circumflex ‘^’, the input field consists of all charac-
ters up to the first character that is not in the set between the brackets; if
the first character after the left bracket is a circumflex, the input field
consists of all characters up to the first character that is in the set of the
remaining characters between the brackets. A NUL character will be
appended to the input.

The conversion characters d, i, o, u and x may be preceded by l to indi-
cate that the subsequent argument is a pointer to long int rather than a
pointer to int, or by h to indicate that it is a pointer to short int. Simi-
larly, the conversion characters e and f may be preceded by l to indicate
that the subsequent argument is a pointer to double rather than a pointer
to float, or by L to indicate a pointer to long double.

The conversion characters e, g or x may be capitalized. However, the
use of upper case has no effect on the conversion process and both
upper and lower case input is accepted.
© 2003 COSMIC SoftwareUsing The Compiler

C Library - scanf
If conversion terminates on a conflicting input character, that character
is left unread in the input stream. Trailing white space (including a
newline) is left unread unless matched in the control string. The success
of literal matches and suppressed assignments is not directly determina-
ble other than via the %n conversion.

Return Value
scanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if end of file is encountered before the first conflict or conversion.

Example
To be certain of a dubious request:

printf(“are you sure?”);
if (scanf(“%c”, &ans) && (ans == 'Y' || ans == 'y'))

scrog();

See Also
sscanf

Notes
scanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of scanf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot read or manipulate floating point numbers. If your pro-
grams call the integer only version of scanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

If an invalid conversion specifier is encountered, it is ignored.
© 2003 COSMIC Software Using The Compiler 149

C Library - setjmp

setjmp

4

150
Description
Save calling environment

Syntax

Function
setjmp saves the calling environment in env for later use by the
longjmp function.

Since setjmp manipulates the stack, it should never be used except as
the single operand in a switch statement.

Return Value
setjmp returns zero on its initial call, or the argument to a longjmp call
that uses the same env.

Example
To call any event until it returns 0 or 1 and calls longjmp, which will
then start execution at the function event0 or event1:

static jmp_buf ev[2];

switch (setjmp(ev[0]))
{

case 0: /* registered */
break;

default: /* event 0 occurred */
event0();
next();
}

switch (setjmp(ev[1])
{

case 0: /* registered */
break;

default: /* event 1 occurred */
event1();
next();

#include <setjmp.h>
int setjmp(jmp_buf env)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - setjmp
}
next();

...
next()

{
int i;

for (; ;)
{
i = anyevent();
if (i == 0 || i == 1)

longjmp(ev[i]);
}

}

See Also
longjmp

Notes
setjmp is packaged in the integer library.
© 2003 COSMIC Software Using The Compiler 151

C Library - sin

sin

4

152
Description
Sin

Syntax

Function
sin computes the sine of x, expressed in radians, to full double preci-
sion. If the magnitude of x is too large to contain a fractional quadrant
part, the value of sin is 0.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

See Also
cos, tan

Notes
sin is packaged in the floating point library.

#include <math.h>
double sin(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - sinh

sinh

Description

Hyperbolic sine

Syntax

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a
double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.iy = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

#include <math.h>
double sinh(double x)
© 2003 COSMIC Software Using The Compiler 153

C Library - sprintf

sprintf

4

154
Description
Output arguments formatted to buffer

Syntax

Function
sprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiers are invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>
int sprintf(char *s, char fmt,...)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - sqrt

sqrt

Description

Real square root

Syntax

Function
sqrt computes the square root of x to full double precision.

Return Value
sqrt returns the nearest internal representation to sqrt(x), expressed as a
double floating value. If x is negative, sqrt returns zero.

Example
To use sqrt to check whether n > 2 is a prime number:

if (!(n & 01))
return (NOTPRIME);

sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)

if (!(n % div))
return (NOTPRIME);

return (PRIME);

See Also
isqrt, lsqrt

Notes
sqrt is packaged in the floating point library.

#include <math.h>
double sqrt(double x)
© 2003 COSMIC Software Using The Compiler 155

C Library - srand

srand

4

156
Description
Seed pseudo-random number generator

Syntax

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. The initial seed value used by rand and srand is 0.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also
rand

Notes
srand is packaged in the integer library.

#include <stdlib.h>
void srand(unsigned char nseed)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - sscanf

sscanf

Description

Read formatted input from a string

Syntax

Function
sscanf reads formatted input from the NUL-terminated string pointed at
by s using the format string at fmt and the arguments specified by ..., in
exactly the same way as scanf. See the description of the scanf function
for information on the format conversion specifiers.

Return Value
sscanf returns the number of assigned input items, which can be zero if
there is an early conflict between an input character and the format, or
EOF if the end of the string is encountered before the first conflict or
conversion.

See Also
scanf

Notes
sscanf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of sscanf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sscanf, the following conversion
specifiers are invalid: e, f, g and p. The L flag is also invalid.

#include <stdio.h>
int sscanf(schar *, char *fmt,...)
© 2003 COSMIC Software Using The Compiler 157

C Library - strcat

strcat

4

158
Description
Concatenate strings

Syntax

Function
strcat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to s1.

Return Value
strcat returns s1.

Example
To place the strings “first string, second string” in buf[]:

buf[0] = '\0';
strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

#include <string.h>
char *strcat(char *s1, char *s2)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strchr

strchr

Description

Scan string for first occurrence of character

Syntax

Function
strchr looks for the first occurrence of a specific character c in a NUL
terminated target string s.

Return Value
strchr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To map keystr[] characters into subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

#include <string.h>
char *strchr(char *s, int c)
© 2003 COSMIC Software Using The Compiler 159

C Library - strcmp

strcmp

4

160
Description
Compare two strings for lexical order

Syntax

Function
strcmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include”:

if (strcmp(buf, “include”) == 0)
doinclude();

See Also
memcmp, strncmp

Notes
strcmp is packaged in the integer library.

#include <string.h>
int strcmp(char *s1, char *s2)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strcpy

strcpy

Description

Copy one string to another

Syntax

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at
by s1. The terminating NUL is also copied.

Return Value
strcpy returns s1.

Example
To make a copy of the string s2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strcpy is packaged in the integer library.

#include <string.h>
char *strcpy(char *s1, char *s2)
© 2003 COSMIC Software Using The Compiler 161

C Library - strcspn

strcspn

4

162
Description
Find the end of a span of characters in a set

Syntax

Function
strcspn scans the string starting at s1 for the first occurrence of a char-
acter in the string starting at s2. It computes a subscript i such that:

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to some character in the string starting at s2,
which may be its terminating null character.

Return Value
strcspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if none of the characters in s1 are in s2.

Example
To find the start of a decimal constant in a text string:

if (!str[i = strcspn(str, “0123456789+-”)])
printf(“can't find number\n”);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strcspn is packaged in the integer library.

#include <string.h>
unsigned int strcspn(char *s1, char *s2)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strlen

strlen

Description

Find length of a string

Syntax

Function
strlen scans the text string starting at s to determine the number of char-
acters before the terminating NUL.

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library.

#include <string.h>
unsigned int strlen(char *s)
© 2003 COSMIC Software Using The Compiler 163

C Library - strncat

strncat

4

164
Description
Concatenate strings of length n

Syntax

Function
strncat appends a copy of the NUL terminated string at s2 to the end of
the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. n specifies the maximum number of characters to
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to s1.

Return Value
strncat returns s1.

Example
To concatenate the strings “day” and “light”:

strcpy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

#include <string.h>
char *strncat(char *s1, char *s2, unsigned int n)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strncmp

strncmp

Description

Compare two n length strings for lexical order

Syntax

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. n specifies the maximum number of characters to be com-
pared, unless the terminating NUL in s1 or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether s1 is lexicographically greater than, equal to, or
less than s2.

Example
To check for a particular error message:

if (strncmp(errmsg,
“can't write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

#include <string.h>
int strncmp(char *s1, char *s2, unsigned int n)
© 2003 COSMIC Software Using The Compiler 165

C Library - strncpy

strncpy

4

166
Description
Copy n length string

Syntax

Function
strncpy copies the first n characters starting at location s2 into the
buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy a total of n
characters.

Return Value
strncpy returns s1.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string s2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

#include <string.h>
char *strncpy(char *s1, char *s2, unsigned int n)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strpbrk

strpbrk

Description

Find occurrence in string of character in set

Syntax

Function
strpbrk scans the NUL terminated string starting at s1 for the first
occurrence of a character in the NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in s1 that is also contained
in the set s2, or a NULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “‘{|}~”))
*string = '@';

See Also
memchr, strchr, strcspn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

#include <string.h>
char *strpbrk(char *s1, char *s2)
© 2003 COSMIC Software Using The Compiler 167

C Library - strrchr

strrchr

4

168
Description
Scan string for last occurrence of character

Syntax

Function
strrchr looks for the last occurrence of a specific character c in a NUL
terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches c, or NULL if
none does.

Example
To find a filename within a directory pathname:

if (s = strrchr(“/usr/lib/libc.user”, '/')
++s;

See Also
memchr, strchr, strpbrk, strcspn, strspn

Notes
strrchr is packaged in the integer library.

#include <string.h>
char *strrchr(char *s,int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strspn

strspn

Description

Find the end of a span of characters not in set

Syntax

Function
strspn scans the string starting at s1 for the first occurrence of a charac-
ter not in the string starting at s2. It computes a subscript i such that

• s1[i] is a character in the string starting at s1

• s1[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if all of the characters in s1 are in s2.

Example
To check a string for characters other than decimal digits:

if (str[strspn(str, “0123456789”)])
printf(“invalid number\n”);

See Also
memchr, strcspn, strchr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

#include <string.h>
unsigned int strspn(char *s1, char *s2)
© 2003 COSMIC Software Using The Compiler 169

C Library - strstr

strstr

4

170
Description
Scan string for first occurrence of string

Syntax

Function
strstr looks for the first occurrence of a specific string s2 not including
its terminating NUL, in a NUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches c, or NULL if
none does.

Example
To look for a keyword in a string:

if (t = strstr(buf, “LIST”))
do_list(t);

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

#include <string.h>
char *strstr(char *s1, char *s2)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strtod

strtod

Description

Convert buffer to double

Syntax

Function
strtod converts the string at nptr into a double. The string is taken as
the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+|-]d*[.d*][e[+|-]dd*]

where d is any decimal digit and e is the character ‘e’ or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against over-
flow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-
able characters, it returns zero.

Example
To read a string from STDIN and convert it to a double at d:

gets(buf);
d = strtod(buf, NULL);

See Also
atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

#include <stdlib.h>
double strtod(char *nptr, char **endptr)
© 2003 COSMIC Software Using The Compiler 171

C Library - strtol

strtol

4

172
Description
Convert buffer to long

Syntax

Function
strtol converts the string at nptr into a long integer. Leading whitespace
is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If base is not zero, characters a-z or A-Z
represents digits in range 10-36. If base is zero, a leading “0x” or “0X”
in the string indicates hexadecimal, a leading “0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “0x” or “0X” is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtol(buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - strtoul

strtoul

Description

Convert buffer to unsigned long

Syntax

Function
strtoul converts the string at nptr into a long integer. Leading
whitespace is skipped and an optional sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
ters a-z or A-Z represents digits in range 10-36. If base is zero, a lead-
ing “0x” or “0X” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If base is 16 and a leading “0x” or “0X” is present, it is skipped before
to convert. If endptr is not a null pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-
ble characters, zero is returned.

Example
To read a string from STDIN and convert it to a long l:

gets(buf);
l = strtoul(buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is a macro redefined to strtol.

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,

int base)
© 2003 COSMIC Software Using The Compiler 173

C Library - tan

tan

4

174
Description
Tangent

Syntax

Function
tan computes the tangent of x, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with a large
size may return a meaningless value, i.e. when x / (2 * pi) has no frac-
tion bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also
cos, sin

Notes
tan is packaged in the floating point library.

#include <math.h>
double tan(double x)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - tanh

tanh

Description

Hyperbolic tangent

Syntax

Function
tanh computes the value of the hyperbolic tangent of x to double preci-
sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as
a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(x);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

#include <math.h>
double tanh(double x)
© 2003 COSMIC Software Using The Compiler 175

C Library - tolower

tolower

4

176
Description
Convert character to lower-case if necessary

Syntax

Function
tolower converts an upper-case letter to its lower-case equivalent, leav-
ing all other characters unmodified.

Return Value
tolower returns the corresponding lower-case letter, or the unchanged
character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)

sum = sum * 16 + *s - '0';
else

sum = sum * 16 + tolower(*s) + (10 - 'a');

See Also
toupper

Notes
tolower is packaged in the integer library.

#include <ctype.h>
int tolower(int c)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - toupper

toupper

Description

Convert character to upper-case if necessary

Syntax

Function
toupper converts a lower-case letter to its upper-case equivalent, leav-
ing all other characters unmodified.

Return Value
toupper returns the corresponding upper-case letter, or the unchanged
character.

Example
To convert a character string to upper-case letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

See Also
tolower

Notes
toupper is packaged in the integer library.

#include <ctype.h>
int toupper(int c)
© 2003 COSMIC Software Using The Compiler 177

C Library - va_arg

va_arg

4

178
Description
Get pointer to next argument in list

Syntax

Function
The macro va_arg is an rvalue that computes the value of the next
argument in a variable length argument list. Information on the argu-
ment list is stored in the array data object ap. You must first initialize ap
with the macro va_start, and compute all earlier arguments in the list by
expanding va_arg for each argument.

The type of the next argument is given by the type name type. The type
name must be the same as the type of the next argument. Remember
that the compiler widens an arithmetic argument to int, and converts an
argument of type float to double. You write the type after conversion.
Write int instead of char and double instead of float.

Do not write a type name that contains any parentheses. Use a type def-
inition, if necessary, as in:

typedef int (*pfi)();
/* pointer to function returning int */
...

fun_ptr = va_arg(ap, pfi);
/* get function pointer argument */

Return Value
va_arg expands to an rvalue of type type. Its value is the value of the
next argument. It alters the information stored in ap so that the next
expansion of va_arg accesses the argument following.

Example
To write multiple strings to a file:

#include <stdarg.h>
type va_arg(va_list ap, type)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - va_arg
#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_end, va_start

Notes
va_arg is a macro declared in the <stdarg.h> header file. You can use it
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2003 COSMIC Software Using The Compiler 179

C Library - va_end

va_end

4

180
Description
Stop accessing values in an argument list

Syntax

Function
va_end is a macro which you must expand if you expand the macro
va_start within a function that contains a variable length argument list.
Information on the argument list is stored in the data object designated
by ap. Designate the same data object in both va_start and va_end.

You expand va_end after you have accessed all argument values with
the macro va_arg, before your program returns from the function that
contains the variable length argument list. After you expand va_end, do
not expand va_arg with the same ap. You need not expand va_arg
within the function that contains the variable length argument list.

You must write an expansion of va_end as an expression statement con-
taining a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_end expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();

strput(pf, “This is one string\n”, \
“and this is another...\n”, (char *)0);

}

#include <stdarg.h>
void va_end(va_list ap)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - va_end
void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_start

Notes
va_end is a macro declared in the <stdarg.h> header file. You can use it
with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2003 COSMIC Software Using The Compiler 181

C Library - va_start

va_start

4

182
Description
Start accessing values in an argument list

Syntax

Function
va_start is a macro which you must expand before you expand the
macro va_arg. It initializes the information stored in the data object
designated by ap. The argument parmN must be the identifier you
declare as the name of the last specified argument in the variable length
argument list for the function. In the function prototype for the function,
parmN is the argument name you write just before the ,...

The type of parmN must be one of the types assumed by an argument
passed in the absence of a prototype. Its type must not be float or char.
Also, parmN cannot have storage class register.

If you expand va_start, you must expand the macro va_end before your
program returns from the function containing the variable length argu-
ment list.

You must write an expansion of va_start as an expression statement
containing a function call. The call must be followed by a semicolon.

Return Value
Nothing. va_start expands to a statement, not an expression.

Example
To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{

#include <stdarg.h>
void va_start(va_list ap, parmN)
© 2003 COSMIC SoftwareUsing The Compiler

C Library - va_start

va_start

void strput();
strput(pf, “This is one string\n”, \

“and this is another...\n”, (char *)0);
}

void strput(FILE *pf,...);
void strput(char *ptr,...)
void strput(ptr)

char *ptr;
{
char ptr;
va_list va;

if (!ptr)
return;

else
{
puts(ptr);
va_start(va, ptr);
while (ptr = va_arg(va, char *)

puts(ptr);
va_end(va);
}

}

See Also
va_arg, va_end

Notes
va_start is a macro declared in the <stdarg.h> header file. You can use
it with any function that accepts a variable number of arguments, by
including <stdarg.h> with your program.
© 2003 COSMIC Software Using The Compiler 183

C Library - vprintf

vprintf

4

184
Description
Output arguments formatted to stdout

Syntax

Function
vprintf writes formatted to the output stream using the format string at
fmt and the arguments specified by pointer ap, in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. The va_start macro must be executed
before to call the vprintf function.

vprintf uses putchar to output each character.

Return Value
vprintf returns the numbers of characters transmitted.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vprintf(fmt, aptr);

See Also
printf, vsprintf

Notes
vprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>

int vprintf(char *s, char fmt, va_list ap)
#include <stdarg.h>
© 2003 COSMIC SoftwareUsing The Compiler

C Library - vsprintf

vsprintf

Description

Output arguments formatted to buffer

Syntax

Function
vsprintf writes formatted to the buffer pointed at by s using the format
string at fmt and the arguments specified by pointer ap, in exactly the
same way as printf. See the description of the printf function for infor-
mation on the format conversion specifiers. A NUL character is written
after the last character in the buffer. The va_start macro must be exe-
cuted before to call the vsprintf function.

Return Value
vsprintf returns the numbers of characters written, not including the ter-
minating NUL character.

Example
To format a double at d into buf:

va_start(aptr, fmt);
vsprintf(buf, fmt, aptr);

See Also
printf, vprintf

Notes
vsprintf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of vsprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print floating point numbers. If your programs call the
integer only version of vsprintf, the following conversion specifiers are
invalid: e, E, f, g and G. The L flag is also invalid.

#include <stdio.h>

int vsprintf(char *s, char fmt, va_list ap)
#include <stdarg.h>
© 2003 COSMIC Software Using The Compiler 185

CHAPTER

5

Using The Assembler
The ca6811 cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler calls ca6811 to
assemble your code automatically, unless specified otherwise. ca6811
generates also listings if requested. This chapter includes the following
sections:

• Invoking ca6811

• Object File

• Listings

• Assembly Language Syntax

• Branch Optimization

• Old Syntax

• C Style Directives

• Directives
© 2003 COSMIC Software Using The Assembler 187

Invoking ca68115

188
Invoking ca6811
ca6811 accepts the following command line options, each of which is
described in detail below:

-a map all sections to absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement is too large. This opti-
mization also applies to jump and jump to subroutines
instructions.

-c produce cross-reference information. The cross-reference
information will be added at the end of the listing file. This
option enforces the -l option.

ca6811 [options] <files>
-a absolute assembler
-b do not optimizes branches
-c output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# fill byte value
-h* include header
-i*> include path
-l output a listing
+l* listing file name
-m accept old syntax
-mi accept label syntax
-o* output file name
-pe all equates public
-pl keep local symbol
-p all symbols public
-u undefined in listing
-v be verbose
-x include line debug info
-xp no path in debug info
-xx include full debug info
© 2003 COSMIC SoftwareUsing The Assembler

Invoking ca6811
-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of dis-
playing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output a title in listing (date, file name, page). By default,
no title is output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default is 0.

-h* include the file specified by * before starting assembly. It
is equivalent to an include directive in each source file.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is a directory name and is not
ended by any directory separator character.

-l create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the ‘.ls’
extension, unless the +l option has been specified.

+l* create a listing file in the text file *. If both -l and +l are
specified, the listing file name is given by the +l option.

-m accept the old Motorola syntax.

-mi accept label that is not ended with a ‘:’ character.

-o* write object code to the file *. If no file name is specified,
the output file name is derived from the input file name, by
replacing the rightmost extension in the input file name
with the character ‘o’. For example, if the input file name
is prog.s, the default output file name is prog.o.
© 2003 COSMIC Software Using The Assembler 189

Object File5

190
-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef direc-
tive for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-p mark all defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-u produce an error message in the listing file for all occur-
rence of an undefined symbol. This option enforces the -l
option.

-v display the name of each file which is processed.

-x add line debug information to the object file.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data. This option disables the -p option as
only public or used labels are selected.

Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, ca6811 generates an object file. If requested by the -
l or -c options, ca6811 generates a listing file even if errors are detected.
Such lines are followed by an error message in the listing.

Object File
The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.
© 2003 COSMIC SoftwareUsing The Assembler

Listings
Listings
The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source_line>

where <address> is the hexadecimal relocatable address where the
<source_line> has been assembled, <generated_code> is the hexadec-
imal representation of the object code generated by the assembler and
<source_line> is the original source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Several directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.

A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.
© 2003 COSMIC Software Using The Assembler 191

Assembly Language Syntax5

192
Assembly Language Syntax
The assembler ca6811 conforms to the Motorola syntax as described in
the document Assembly Language Input Standard. The assembly lan-
guage consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or

; comment

where ‘:’ indicates the end of a label and ‘;’ defines the start of a com-
ment. The end of a line terminates a comment. The command field may
be an instruction, a directive or a macro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-
guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
ca6811 recognizes the following instructions:

aba bge cba dey lslb rol suba
abx bgt clc eora lsld rola subb
aby bhi cli eorb lsr rolb subd
adca bhs clr fdiv lsra ror swi
adcb bita clra idiv lsrb rora tab
adda bitb clrb inc lsrd rorb tap
addb ble clv inca mul rti tba
addd blo cmpa incb neg rts test
anda bls cmpb ins nega sba tpa
andb blt com inx negb sbca tst
asl bmi coma iny nop sbcb tsta
asla bne comb jmp oraa sec tstb
aslb bpl cpd jsr orab sei tsx
asld bra cpx ldaa psha sev tsy
asr brclr cpy ldab pshb staa txs
asra brn daa ldd pshx stab tys
asrb brset dec lds pshy std wai
bcc bset deca ldx pula stop xgdx
bclr bsr decb ldy pulb sts xgdy
© 2003 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
bcs bvc des lsl pulx stx
beq bvs dex lsla puly sty

The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following example demonstrates
the accepted syntax:

tpa ; implicit
ldaa #1 ; immediate
anda var ; direct or extended
addd ,x ; indexed
orab 0,x ; indexed
bne loop ; relative
bset var,2 ; bit number
brset var,2,loop ; bit test and branch

The assembler chooses the smallest addressing mode where several
solutions are possible. Direct addressing mode is selected when using a
label defined in the .bsct section.

For an exact description of the above instructions, refer to the
Motorola’s M68HC11 Reference Manual.

Labels
A source line may begin with a label. Some directives require a label on
the same line, otherwise this field is optional. A label must begins with
an alphabetic character, the underscore character ‘_’ or the period char-
acter ‘.’. It is continued by alphabetic (A-Z or a-z) or numeric (0-9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names ‘a’, ‘b’, ‘x’ and ‘y’ are reserved and
cannot be used as labels.

data1:dc.b $56
c_reg:ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a multiply defined
symbol error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.
© 2003 COSMIC Software Using The Assembler 193

Assembly Language Syntax5

194
wait: macro
\@loop: brset PORTA,1,\@loop

endm

Temporary Labels
The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such a label is composed by a dec-
imal number immediately followed by a ‘$’ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined
error message.

1$: deca
bne 1$

2$: decb
bne 2$

Temporary labels do not appear in the symbol table or the cross refer-
ence list.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

function1:
10$: ldab var

beq 10$
stab var2
local

10$: ldaa var2
beq 10$
staa var
rts

function2:
10$: ldaa var2

suba var
bne 10$
rts

Constants
The assembler accepts numeric constants and string constants.
Numeric constants are expressed in different bases depending on a pre-
fix character as follows:
© 2003 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

The suffix letter can be entered upper case or lower case. Hexadecimal
numbers still need to start with a digit.

String constants are a series of printable characters between single or
double quote characters:

‘This is a string’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for a data initialization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b ‘0123456789ABCDEF’
start:cmpa #’A’ ; ASCII value of ’A’

Number Base

10 decimal (no prefix)

%1010 binary

@12 octal

$A hexadecimal

Suffix Base

D, d or none decimal (no prefix)

B or b binary

Q or q octal

0AH or 0Ah hexadecimal
© 2003 COSMIC Software Using The Assembler 195

Assembly Language Syntax5

196
Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

A special label written ‘*’ is used to represent the current location
address. Note that when ‘*’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operators is:

+ addition
- subtraction (negation)
* multiplication
/ division
% remainder (modulus)
& bitwise and
| bitwise or
^ bitwise exclusive or
~ bitwise complement
<< left shift
>> right shift
== equality
!= difference
< less than
<= less than or equal
> greater than
>= greater than or equal
&& logical and
|| logical or
! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
label1 - label2

The difference of two relocatable labels is valid only if both symbols are
not external symbols, and are defined in the same section.

NOTE
© 2003 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
An expression may also be constructed with a special operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These special operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operators if allowed.

high - extract the upper byte of the 16-bit expression

low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. This is used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction is a list of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macro begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
clra ; prepare MSB
tstb ; test sign
bpl \@pos ; if not positive
coma ; invert MSB

\@pos:
endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of a into x. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

ldab char+1; load LSB
signex ; expand macro
std char ; store result
© 2003 COSMIC Software Using The Assembler 197

Assembly Language Syntax5

198
The resulting code will be the same as if the following code had been
written:

ldab char+1; load LSB
clra ; prepare MSB
tstb ; test sign
bpl pos ; if not positive
coma ; invert MSB

pos:
std char ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,... \9,\A,...\Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by a list of argu-
ment named, each prefixed by a \ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a \ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
alphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using the numbered syntax:

signex:macro ; sign extension
clra ; prepare MSB
ldab \1+1 ; load LSB
bpl \@pos ; if not positive
coma ; invert MSB

\@pos:std \1 ; store MSB
endm ; end of macro
© 2003 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
And called:

signex char ; sign extend char

This macro may also be written using the named syntax:

signex:macro\value; sign extension
clra ; prepare MSB
ldab \value; load LSB
bpl \@pos ; if not positive
coma ; invert MSB

\@pos:std \(value); store MSB
endm ; end of macro

The syntax of a macro call is:

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion is a single letter which may represent the size of the operands and
the result. For example:

table:macro
dc.\0 1,2,3,4
endm

When invoking the macro:

table.b

will generate a table of byte:

dc.b 1,2,3,4

When invoking the macro:

table.w

will generate a table of word:

dc.w 1,2,3,4

 name>[.<ext>] [<arguments>]
© 2003 COSMIC Software Using The Assembler 199

Assembly Language Syntax5

200
The special parameter * is replaced by a sequence containing the list of
all the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or a repeatl directive.

The directive mexit may be used at any time to stop the macro expan-
sion. It is generally used in conjunction with a conditional directive.

A macro call may be used within another macro definition. A macro
definition cannot contain another macro definition.

If a listing is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
all the expanded lines are printed with all the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives
A conditional directive allows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ldx #message
jsr print
endif

If the symbol debug is equal to 1, the next two lines are assembled.
Otherwise they are skipped.

if offset != 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

If the symbol offset is not one, the macro addptr is expanded with off-
set as argument, otherwise the inx instruction is directly assembled.
© 2003 COSMIC SoftwareUsing The Assembler

Assembly Language Syntax
Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If a listing is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

data: section ; defines data section
text: section ; defines text section
start:

ldx #value; fills text section
jmp print
switchdata ; use now data section

value:
dc.b 1,2,3 ; fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name is too long, it is simply trun-
cated without any error message.

The assembler predefines the following sections, meaning that a section
directive is not needed before to use them:

Section Description

.text executable code

.data initialized data

.bss uninitialized data

.bsct initialized data in zero page

.ubsct uninitialized data in zero page
© 2003 COSMIC Software Using The Assembler 201

Assembly Language Syntax5

202
The sections .bsct and .ubsct are used for locating data in the zero page
of the processor. The zero page is defined as the memory addresses
between 0x00 and 0xFF inclusive, i.e. the memory directly addressable
by a single byte. Several processors include special instructions and/or
addressing modes that take advantage of this special address range. The
Cosmic assembler will automatically use the most efficient addressing
mode if the data objects are allocated in the .bsct, .ubsct or a section
with the same attributes. If zero page data objects are defined in another
file then the directive xref.b must be used to externally reference the
data object. This directive specifies that the address for these data
object is only one byte and therefore the assembler may use 8 bit
addressing modes.

The operator “>” may optionally be used to force the assembler to use
extended addressing instead of direct addressing for addressing zero
page objects.

xref var
xref.b zvar

switch.bsct
zvar2: ds.b 1

switch.bss
var2: ds.b 1

switch.text
ldaa var
ldaa zvar
ldaa var2
ldaa var2
end

Includes
The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (‘;’ for MSDOS and ‘:’ for UNIX).
© 2003 COSMIC SoftwareUsing The Assembler

Branch Optimization
The -h option can specify a file to be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.

Branch Optimization
Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset is limited to the range [-128,127]. If such an
instruction cannot be encoded properly, the assembler will replace it by
a sequence containing an inverted branch to the next location followed
immediately by a jump to the original target address. The assembler
keep track of the last replacement for each label, so if a long branch has
already been expanded for the same label at a location close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the already existing jump instruction to
the specified label.

beq farlabel becomes bne *+5
jmp farlabel

Note that a bra instruction will be replaced by a single jmp instruction if
it cannot be encoded as a relative branch.

A jmp or jsr instruction will be replaced by a bra or bsr instruction if
the destination address is in the same section than the current one, and if
the displacement is in the range allowed by a relative branch.

Old Syntax
The -m option allows the assembler to accept old constructs which are
now obsolete. The following features are added to the standard behav-
iour:

• a label starting in the first column does not need to be ended with
a ‘:’ character;
© 2003 COSMIC Software Using The Assembler 203

C Style Directives5

204
• a comment line may begin with a ‘*’ character;

• no error message is issued if an operand of the dc.b directive is
too large;

• the section directive handles numbered sections;

The comment separator at the end of an instruction is still the ‘;’ charac-
ter because the ‘*’ character is interpreted as the multiply operator.

C Style Directives
The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the
equivalence with the standard directives:

Directives
This section consists of quick reference descriptions for each of the
ca6811 assembler directives.

C Style Assembler Style

#include “file” include “file”

#define label expression label: equ expression

#define label label: equ 1

#if expression if expression

#ifdef label ifdef label

#ifndef label ifndef label

#else else

#endif endif

#error “message” fail “message”

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol
equal to a numerical value.

NOTE
© 2003 COSMIC SoftwareUsing The Assembler

C Library - align

align

Description

Align the next instruction on a given boundary

Syntax

Function
The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value>, is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also
even

align <expression>,[<fill_value>]
© 2003 COSMIC Software Using The Assembler 205

C Library - base

base

5

206
Description
Define the default base for numerical constants

Syntax

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal base is used
by default. When another base is selected, it is no more possible to enter
decimal constants.

Example
base 8 ; select octal base
ldaa #377 ; load $FF

base <expression>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - bsct

bsct

Description

Switch to the predefined .bsct section.

Syntax

Function
The bsct directive switches input to a section named .bsct, also known
as the zero page section. The assembler will automatically select the
direct addressing mode when referencing an object defined in the .bsct
section.

Example
bsct

c_reg:
ds.b 1

Notes
The .bsct section is limited to 256 bytes, but the assembler does not
check the .bsct section size. This will be done by the linker.

See Also
section, switch

bsct
© 2003 COSMIC Software Using The Assembler 207

C Library - clist

clist

5

208
Description
Turn listing of conditionally excluded code on or off.

Syntax

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lines which are not
assembled as a consequence of if, else and endif directives.

See Also
if, else, endif

clist [on|off]
© 2003 COSMIC SoftwareUsing The Assembler

C Library - dc

dc

Description

Allocate constant(s)

Syntax

Function
The dc directive allocates and initializes storage for constants. If
<expression> is a string constant, one byte is allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will allocate one byte per <expression>.

The dc.w directive will allocate one word per <expression>.

The dc.l directive will allocate one long word per <expression>.

Example
digit:dc.b 10,'0123456789'

dc.w digit

Note
For compatibility with previous assemblers, the directive fcb is alias to
dc.b, and the directive fdb is alias to dc.w.

dc[.size] <expression>[,<expression>...]
© 2003 COSMIC Software Using The Assembler 209

C Library - dcb

dcb

5

210
Description
Allocate constant block

Syntax

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size area is the number of the specified value <count> of
<size>. The memory area can be initialized with the <value> specified.

The dcb and dcb.b directives will allocate one byte per <count>.

The dcb.w directive will allocate one word per <count>.

The dcb.l directive will allocate one long word per <count>.

Example
digit:dcb.b 10,5 ; allocate 10 bytes,

; all initialized to 5

dcb.<size> <count>,<value>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - dlist

dlist

Description

Turn listing of debug directives on or off.

Syntax

Function
The dlist directive controls the visibility of any debug directives in the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

dlist [on|off]
© 2003 COSMIC Software Using The Assembler 211

C Library - ds

ds

5

212
Description
Allocate variable(s)

Syntax

Function
The ds directive allocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The ds and ds.b directives will allocate <space> bytes.

The ds.w directive will allocate <space> words.

The ds.l directive will allocate <space> long words.

Example
ptlec:ds.b 2
ptecr:ds.b 2
chrbuf:ds.w 128

Note
For compatibility with previous assemblers, the directive rmb is alias
to ds.b.

ds[.size] <space>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - else

else

Description

Conditional assembly

Syntax

Function
The else directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previous if directive.

Example
if offset != 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

Note
The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

if <expression>
instructions
else
instructions
endif
© 2003 COSMIC Software Using The Assembler 213

C Library - elsec

elsec

5

214
Description
Conditional assembly

Syntax

Function
The elsec directive follows an if directive to define an alternative condi-
tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previous if directive.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note
The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

if <expression>
instructions
elsec
instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - end

end

Description

Stop the assembly

Syntax

Function
The end directive stops the assembly process. Any statements follow-
ing it are ignored. If the end directive is encountered in an included file,
it will stop the assembly process for the included file only.

 end
© 2003 COSMIC Software Using The Assembler 215

C Library - endc

endc

5

216
Description
End conditional assembly

Syntax

Function
The endc directive closes an if<cc> or elsec conditional directive. The
conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or
elsec directive.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

Note
The endc and endif directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if<cc>, elsec, clist, end

if<cc> <expression>
instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - endif

endif

Description

End conditional assembly

Syntax

Function
The endif directive closes an if or else conditional directive. The condi-
tional status reverts to the one existing before entering the if directive.
The endif directive applies to the closest previous if or else directive.

Example
if offset != 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

Note
The endif and endc directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
 if, else, clist

if <expression>
instructions
endif
© 2003 COSMIC Software Using The Assembler 217

C Library - endm

endm

5

218
Description
End macro definition

Syntax

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of
; a string in a byte prior to the string

ltext:macro
ds.b \@2 - \@1

\@1:
ds.b \1

\@2:
endm

See Also
mexit, macro

label: macro
 <macro_body>
 endm
© 2003 COSMIC SoftwareUsing The Assembler

C Library - endr

endr

Description

End repeat section

Syntax

Function
The endr directive is used to terminate repeat sections.

Example
; shift a value n times
asln: macro

repeat \1
aslb
endr
endm

; use of above macro
asln 10;shift 10 times

See Also
repeat

repeat
<macro_body>
endr
© 2003 COSMIC Software Using The Assembler 219

C Library - equ

equ

5

220
Description
Give a permanent value to a symbol

Syntax

Function
The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value altered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

Example
false:equ 0 ; initialize these values
true: equ 1
tablen:equ tabfin - tabsta;compute table length
nul: equ $0; define strings for ascii characters
soh: equ $1
stx: equ $2
etx: equ $3
eot: equ $4
enq: equ $5

See Also
lit, set

label: equ <expression>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - even

even

Description

Assemble next byte at the next even address relative to the start of a
section.

Syntax

Function
The even directive forces the next assembled byte to the next even
address. If a bytes is added to the section, it is set to the value of the fill-
ing byte defined by the -f option. If <fill_value>, is specified, it will be
used locally as the filling byte, instead of the one specified by the -f
option.

Example
vowtab:dc.b 'aeiou'

even ; ensure aligned at even address
tentab:dc.w 1, 10, 100, 1000

even [<fill_value>]
© 2003 COSMIC Software Using The Assembler 221

C Library - fail

fail

5

222
Description
Generate error message.

Syntax

Function
The fail directive outputs “string” as an error message. No output file is
produced as this directive creates an assembly error. fail is generally
used with conditional directives.

Example
Max: equ 512

ifge value - Max
fail “Value too large”

fail "string"
© 2003 COSMIC SoftwareUsing The Assembler

C Library - if

if

Description

Conditional assembly

Syntax

Function
The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive applies to
the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
if offset != 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

See Also
else, endif, clist

if <expression> or if <expression>
instructions instructions
endif else

instructions
endif
© 2003 COSMIC Software Using The Assembler 223

C Library - ifc

ifc

5

224
Description
Conditional assembly

Syntax

Function
The ifc, else and endc directives allow conditional assembly. The ifc
directive is followed by a constant expression. If <string1> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument
ldab #45 ; load 45
elsec ; otherwise...
ldab #0
endc

See Also
elsec, endc, clist

ifc <string1>,<string2> orifc <string1>,<string2>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - ifdef

ifdef

Description

Conditional assembly

Syntax

Function
The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directive is followed by a label <label>. If <label> is defined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be a forward reference.

If the ifdef statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifdef offset1 ; if offset1 is defined
addptroffset1 ; call a macro
elsec ; otherwise
addptroffset2 ; call a macro
endif

See Also
ifndef, elsec, endc, clist

ifdef <label> or ifdef <label>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC Software Using The Assembler 225

C Library - ifeq

ifeq

5

226
Description
Conditional assembly

Syntax

Function
The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul
tsta ; just test it
elsec ; otherwise
adda #offset ; add to accu
endc

See Also
elsec, endc, clist

ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - ifge

ifge

Description

Conditional assembly

Syntax

Function
The ifge, elsec and endc directives allow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifge expression is greater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also
elsec, endc, clist

ifge <expression> or ifge <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC Software Using The Assembler 227

C Library - ifgt

ifgt

5

228
Description
Conditional assembly

Syntax

Function
The ifgt, elsec and endc directives allow conditional assembly. The ifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifgt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifgt offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
inx ; increment X register
endc

See Also
elsec, endc, clist

ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - ifle

ifle

Description

Conditional assembly

Syntax

Function
The ifle, elsec and endc directives allow conditional assembly. The ifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifle statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifle offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also
elsec, endc, clist

ifle <expression> or ifle <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC Software Using The Assembler 229

C Library - iflt

iflt

5

230
Description
Conditional assembly

Syntax

Function
The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
iflt offset-127 ; if offset small enough
inx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also
elsec, endc, clist

iflt <expression> or iflt <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - ifnc

ifnc

Description

Conditional assembly

Syntax

Function
The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <string1> and
<string2> are different, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifnc “hello”, \2
addptroffset ; call a macro
else ; otherwise
inx ; increment X register
endif

See Also
elsec, endc, clist

ifnc <string1>,string2> orifnc <string1><string2>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC Software Using The Assembler 231

C Library - ifndef

ifndef

5

232
Description
Conditional assembly

Syntax

Function
The ifndef, else and endc directives allow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be a forward reference.

If the ifndef statement ends with an elsec directive, the expression
result is inverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not be in
the listing depending on the clist directive status.

Example
ifndefoffset1 ; if offset1 is not defined
addptroffset2 ; call a macro
elsec ; otherwise
addptroffset1 ; call a macro
endif

See Also
ifdef, elsec, endc, clist

ifndef <label> or ifndef <label>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC SoftwareUsing The Assembler

C Library - ifne

ifne

Description

Conditional assembly

Syntax

Function
The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
is inverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previous if directive.

The if directives may be nested. The skipped lines may or may not in
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul
adda #offset ; add to accu
elsec ; otherwise
tsta ; just test it
endc

See Also
elsec, endc, clist

ifne <expression> or ifne <expression>
instructions instructions
endc elsec

instructions
endc
© 2003 COSMIC Software Using The Assembler 233

C Library - include

include

5

234
Description
Include text from another text file

Syntax

Function
The include directive causes the assembler to switch its input to the
specified filename until end of file is reached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/lowercase characters should be respected.

Example
include “datstr” ; use data structure library
include “bldstd” ; use current build standard
include “matmac” ; use maths macros
include “ports82” ; use ports definition

include "filename"
© 2003 COSMIC SoftwareUsing The Assembler

C Library - list

list

Description

Turn on listing during assembly.

Syntax

Function
The list directive controls the parts of the program which will be written
to the listing file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

 list
© 2003 COSMIC Software Using The Assembler 235

C Library - lit

lit

5

236
Description
Give a text equivalent to a symbol

Syntax

Function
The lit directive is used to associate a text string to a symbol (label).
This symbol is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: lit “#5”

ldx nbr ; expand as ‘ldx #5’

See Also
equ, set

label: lit “string”
© 2003 COSMIC SoftwareUsing The Assembler

C Library - local

local

Description

Create a new local block

Syntax

Function
The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard labels or local directives or a combination of the two.

Example
var: ds.b 1
var2: ds.b 1
function1:
10$: ldab var

beq 10$
stab var2

local
10$: ldaa var2

beq 10$
staa var
rts

local
© 2003 COSMIC Software Using The Assembler 237

C Library - macro

macro

5

238
Description
Define a macro

Syntax

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name already used as a macro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a \ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form \1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a \ character. The macro variable
name can also be enclosed by parenthesis to avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The special parameter * is expanded to the full list of passed arguments
separated by commas.

label: macro
<macro_body>
endm
© 2003 COSMIC SoftwareUsing The Assembler

C Library - macro
The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. For more
information, see “Macro Instructions” on page 197.

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@’ may be prepended to a label in order to allow a
unique name expansion. The sequence ‘\@’ will be replaced by a
unique number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; in a byte in front of the string using numbered syntax
;
ltext:macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as first operand
\@2:

endm

; define a macro that places the length of a string
; in a byte in front of the string using named syntax
;
ltext:macro \string

dc.b \@2-\@1
\@1:

dc.b \string ; text given as first operand
\@2:

endm

See Also
endm, mexit
© 2003 COSMIC Software Using The Assembler 239

C Library - messg

messg

5

240
Description
Send a message out to STDOUT

Syntax

Function
The messg directive is used to send a message out to the host system’s
standard output (STDOUT).

Example
messg “Test code for debug”

ldaa _#2
staa _SCR

See Also
title

messg “<text>”
messg ‘<text>’
© 2003 COSMIC SoftwareUsing The Assembler

C Library - mexit

mexit

Description

Terminate a macro definition

Syntax

Function
The mexit directive is used to exit from a macro definition before the
endm directive is reached. mexit is usually placed after a conditional
assembly directive.

Example
ctrace:macro

if tflag == 0
mexit

endif
jsr \1
endm

See Also
endm, macro

mexit
© 2003 COSMIC Software Using The Assembler 241

C Library - mlist

mlist

5

242
Description
Turn on or off listing of macro expansion.

Syntax

Function
The mlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it is ignored otherwise.

The parts of the program to be listed are the lines which are assembled
in a macro expansion.

See Also
macro

mlist [on|off]
© 2003 COSMIC SoftwareUsing The Assembler

C Library - nolist

nolist

Description

Turn off listing.

Syntax

Function
The nolist directive controls the parts of the program which will be not
written to the listing file until an end or a list directive is encountered. It
is effective if and only if listings are requested; it is ignored otherwise.

See Also
list

Note
For compatibility with previous assemblers, the directive nol is alias to
nolist.

 nolist
© 2003 COSMIC Software Using The Assembler 243

C Library - nopage

nopage

5

244
Description
Disable pagination in the listing file

Syntax

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It is ignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

nopage
© 2003 COSMIC SoftwareUsing The Assembler

C Library - offset

offset

Description

Creates absolute symbols

Syntax

Function
The offset directive starts an absolute section which will only be used to
define symbols, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example
offset0

next:
ds.b 2

buffer:
ds.b 80

switch.text
size:

ldy next,x; ends the offset section

offset <expression>
© 2003 COSMIC Software Using The Assembler 245

C Library - org

org

5

246

Description
Sets the location counter to an offset from the beginning of a section.

Syntax

Function
<expression> must be a valid absolute expression. It must not contain
any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

org <expression>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - page

page

Description

Start a new page in the listing file

Syntax

Function
The page directive causes a formfeed to be inserted in the listing output
if pagination is enabled by either a title directive or the -ft option.

Example
xref mult, div
page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

page
© 2003 COSMIC Software Using The Assembler 247

C Library - plen

plen

5

248
Description
Specify the number of lines per pages in the listing file

Syntax

Function
The plen directive causes <page_length> lines to be output per page in
the listing output if pagination is enabled by either a title directive or
the -ft option. If the number of lines already output on the current page
is less than <page_length>, then the new page length becomes effec-
tive with <page_length>. If the number of lines already output on the
current page is greater than or equal to <page_length>, a new page will
be started and the new page length is set to <page_length>.

Example
plen 58

See Also
page

plen <page_length
© 2003 COSMIC SoftwareUsing The Assembler

C Library - repeat

repeat

Description

Repeat a list of lines a number of times

Syntax

Function
The repeat directive is used to cause the assembler to repeat the follow-
ing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the expression
operand. The repeat directive is equivalent to a macro definition fol-
lowed by the same number of calls on that macro.

Example
; shift a value n times
asln: macro

repeat \1
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

repeat <expression>
repeat_body
endr
© 2003 COSMIC Software Using The Assembler 249

C Library - repeatl

repeatl

5

250
Description
Repeat a list of lines a number of times

Syntax

Function
The repeatl directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl
directive is equivalent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a \ character. In such a case, the repeat argument is
specified by its name prefixed by a \ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been
reached.

Example
; test a value using the numbered syntax
repeatl 1,2,3

add #\1 ; add to accu
endr
end

or

; test a value using the named syntax
repeatl \count,1,2,3

add #\count; add to accu
endr
end

repeatl <arguments>
repeat_body
endr
© 2003 COSMIC SoftwareUsing The Assembler

C Library - repeatl
will both produce:

 2 ; test a value
 9 0000 c30001 add #1 ; add to accu
 9 0003 c30002 add #2 ; add to accu
 9 0006 c30003 add #3 ; add to accu
10 end

See Also
endr, repeat, rexit
© 2003 COSMIC Software Using The Assembler 251

C Library - restore

restore

5

252
Description
Restore saved section

Syntax

Function
The restore directive is used to restore the last saved section. This is
equivalent to a switch to the saved section.

Example
switch.bss
var: ds.b 1
var2: ds.b 1

save
switch.text

function1:
10$: ldab var

beq 10$
stab var2

function2:
10$: ldaa var2

suba var
bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldaa var3
staa var4
end

See Also
save, section

restore
© 2003 COSMIC SoftwareUsing The Assembler

C Library - rexit

rexit

Description

Terminate a repeat definition

Syntax

Function
The rexit directive is used to exit from a repeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times
asln: macro

repeat \1
if \1 == 0

rexit
endif
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeat, repeatl

rexit
© 2003 COSMIC Software Using The Assembler 253

C Library - save

save

5

254
Description
Save section

Syntax

Function
The save directive is used to save the current section so it may be
restored later in the source file.

Example
switch.bss

var: ds.b 1
var2: ds.b 1

save
switch .text

function1:
10$: ldab var

beq 10$
stab var2

function2:
10$: ldaa var2

suba var
bne 10$
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

ldaa var3
staa var4
end

See Also
restore, section

save
© 2003 COSMIC SoftwareUsing The Assembler

C Library - section

section

Description

Define a new section

Syntax

Function
The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
already existing section. If no name and no attributes are specified to
the section, the default is to defined the section as a text section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a ‘+’ character or not
prefixed, or deleted if prefixed by a ‘-’ character. Several attributes may
be specified separated by commas. Attribute keywords are:

Example
CODE: section.text; section of text
lab1: ds.b 5
DATA: section.data; section of data
lab2: ds.b 6

switchCODE
lab3: ds.b 7

switchDATA
lab4: ds.b 8

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance

even enforce even starting address and size

zpage enforce 8 bit relocation

long enforce 32 bit relocation

<section_name>: section [<attributes>]
© 2003 COSMIC Software Using The Assembler 255

C Library - section5

256
This will place lab1 and then lab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame:section.bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

.bit: section+zpage,+even,-hilo

The .bit section is declared using 8 bit relocation, with an even align-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, a labelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: section1 ; define section 1
nop

.ram: section2 ; define section 2
dc.b 1
section1 ; switch back to section 1
nop

It is still possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct
© 2003 COSMIC SoftwareUsing The Assembler

C Library - set

set

Description

Give a resetable value to a symbol

Syntax

Function
The set directive allows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembled.

Example
OFST: set 10

See Also
equ, lit

label: set <expression>
© 2003 COSMIC Software Using The Assembler 257

C Library - spc

spc

5

258
Description
Insert a number of blank lines before the next statement in the listing
file.

Syntax

Function
The spc directive causes <num_lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing is requested, 5 blank lines will be inserted, then the title will be
output.

See Also
title

spc <num_lines>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - switch

switch

Description

Place code into a section.

Syntax

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be already defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch.bss

buffer:ds.b 512
xdef buffer

This will place buffer into the .bss section.

See Also
section, bsct

switch <section_name>
© 2003 COSMIC Software Using The Assembler 259

C Library - tabs

tabs

5

260
Description
Specify the number of spaces for a tab character in the listing file

Syntax

Function
The tabs directive sets the number of spaces to be substituted to the tab
character in the listing output. The minimum value of <tab_size> is 0
and the maximum value is 128.

Example
tabs 6

tabs <tab_size>
© 2003 COSMIC SoftwareUsing The Assembler

C Library - title

title

Description

Define default header

Syntax

Function
The title directive is used to enable the listing pagination and to set the
default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
page, plen

Note
For compatibility with previous assemblers, the directive ttl is alias to
title.

title "name"
© 2003 COSMIC Software Using The Assembler 261

C Library - xdef

xdef

5

262
Description
Declare a variable to be visible

Syntax

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
allow for usage of common headers.

Example
xdef sqrt ; allow sqrt to be called

; from another module
sqrt: ; routine to return a square root

; of a number >= zero

See Also
xref

xdef identifier[,identifier...]
© 2003 COSMIC SoftwareUsing The Assembler

C Library - xref

xref

Description

Declare symbol as being defined elsewhere

Syntax

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-
tion.

Example
xref otherprog
xref.bzpage ; is in .bsct section

See Also
xdef

xref[.b] identifier[,identifier...]
© 2003 COSMIC Software Using The Assembler 263

CHAPTER

6

Using The Linker
This chapter discusses the clnk linker and details how it operates. It
describes each linker option, and explains how to use the linker's many
special features. It also provides example linker command lines that
show you how to perform some useful operations. This chapter includes
the following sections:

• Introduction

• Overview

• Linker Command File Processing

• Linker Options

• Section Relocation

• Setting Bias and Offset

• Linking Objects

• Linking Library Objects

• Automatic Data Initialization

• Checksum Computation
© 2003 COSMIC Software Using The Linker 265

6

266
• Shared Data Handling

• DEFs and REFs

• Special Topics

• Description of The Map File

• Linker Command Line Examples
© 2003 COSMIC SoftwareUsing The Linker

Introduction
Introduction
The linker combines relocatable object files, selectively loading from
libraries of such files made with clib, to create an executable image for
standalone execution or for input to other binary reformatters.

clnk will also allow the object image that it creates to have local symbol
regions, so the same library can be loaded multiple times for different
segments, and so that more control is provided over which symbols are
exposed. On microcontroller architectures this feature is useful if your
executable image must be loaded into several noncontiguous areas in
memory.

The assembler creates several sections in each object module. The
linker combines input sections in various ways, but will not break one
up. The linker then maps these combined input sections into output seg-
ments in the executable image using the options you specify.

A “segment” is a logically unified block of memory in the executable
image. An example is the code segment which contains the executable
instructions.

For most applications, the “sections” in an object module that the linker
accepts as input are equivalent to the “segments” of the executable
image that the linker generates as output.

The terms “segment” and “section” refer to different entities and are
carefully kept distinct throughout this chapter. A “section” is a contigu-
ous subcomponent of an object module that the linker treats as indivisi-
ble.

NOTE
© 2003 COSMIC Software Using The Linker 267

Overview6

268
Overview
You use the linker to build your executable program from a variety of
modules. These modules can be the output of the C cross compiler, or
can be generated from handwritten assembly language code. Some
modules can be linked unconditionally, while others can be selected
only as needed from function libraries. All input to the linker, regard-
less of its source, must be reduced to object modules, which are then
combined to produce the program file.

The output of the linker can be in the same format as its input. Thus, a
program can be built in several stages, possibly with special handling at
some of the stages. It can be used to build freestanding programs such
as system bootstraps and embedded applications. It can also be used to
make object modules that are loaded one place in memory but are
designed to execute somewhere else. For example, a data segment in
ROM to be copied into RAM at program startup can be linked to run at
its actual target memory location. Pointers will be initialized and
address references will be in place.

As a side effect of producing files that can be reprocessed, clnk retains
information in the final program file that can be quite useful. The sym-
bol table, or list of external identifiers, is handy when debugging pro-
grams, and the utility cobj can be made to produce a readable list of
symbols from an object file. Finally, each object module has in its
header useful information such as segment sizes.

In most cases, the final program file created by clnk is structurally iden-
tical to the object module input to clnk. The only difference is that the
executable file is complete and contains everything that it needs to run.
There are a variety of utilities which will take the executable file and
convert it to a form required for execution in specific microcontroller
environments. The linker itself can perform some conversions, if all
that is required is for certain portions of the executable file to be
stripped off and for segments to be relocated in a particular way. You
can therefore create executable programs using the linker that can be
passed directly to a PROM programmer.
© 2003 COSMIC SoftwareUsing The Linker

Overview
The linker works as follows:

• Options applying to the linker configuration. These options are
referred to in this chapter as “Global Command Line Options” on
page 273.

• Command file options apply only to specific sections of the object
being built. These options are referred to in this chapter as “Seg-
ment Control Options” on page 274.

• Sections can be relocated to execute at arbitrary places in physical
memory, or “stacked” on suitable storage boundaries one after the
other.

• The final output of the linker is a header, followed by all the seg-
ments and the symbol table. There may also be an additional
debug symbol table, which contains information used for debug-
ging purposes.
© 2003 COSMIC Software Using The Linker 269

Linker Command File Processing6

270
Linker Command File Processing
The command file of the linker is a small control language designed to
give the user a great deal of power in directing the actions of the linker.
The basic structure of the command file is a series of command items.
A command item is either an explicit linker option or the name of an
input file (which serves as an implicit directive to link in that file or, if it
is a library, scan it and link in any required modules of the library).

An explicit linker option consists of an option keyword followed by any
parameters that the option may require. The options fall into five
groups:

A description of each of these command line options appears below.

 Group 1

(+seg <section>) controls the creation of new segments and has
parameters which are selected from the set of local flags.

(+grp <section>) controls the section grouping.

Group 2

(+inc*) is used to include files

Group 3

(+new, +pub and +pri) controls name regions and takes no parame-
ters.

Group 4

 (+def <symbol>) is used to define symbols and aliases and takes one
required parameter, a string of the form ident1=ident2, a string of the
form ident1=constant, or a string of the form ident1=@segment.

Group 5

(+spc <segment>) is used to reserve space in a particular <segment>
and has a required parameter
© 2003 COSMIC SoftwareUsing The Linker

Linker Command File Processing
The manner in which the linker relocates the various sections is control-
led by the +seg option and its parameters. If the size of a current seg-
ment is zero when a command to start a new segment of the same name
is encountered, it is discarded. Several different sections can be redi-
rected directly to the same segment by using the +grp option.

clnk links the <files> you specify in order. If a file is a library, it is
scanned as long as there are modules to load. Only those library mod-
ules that define public symbols for which there are currently outstand-
ing unsatisfied references are included.

Inserting comments in Linker commands
Each input line may be ended by a comment, which must be prefixed by
a # character. If you have to use the # as a significant character, you can
escape it, using the syntax \#.

Here is an example for an indirect link file:

Link for EPROM
+seg .data -b0x2000 # start data address
+seg .text -b0xe000 -n .text # start eprom address
+seg .const -a .text # constants follow program
\cx32\lib\crts.h11 # startup object file
mod1.o mod2.o # input object files
\cx32\lib\libi.h11 # C library
\cx32\lib\libm.h11 # machine library
+seg .const -b0xffd6 # vectors eprom address
vector.o # reset and interrupt vectors
© 2003 COSMIC Software Using The Linker 271

Linker Options6

272
Linker Options
The linker accepts the following options, each of which is described in
detail below.

The output file name and the link command file must be present on
the command line. The options are described in terms of the two groups
listed above; the global options that apply to the linker, and the segment
control options that apply only to specific segments.

clnk [options] <file.lkf> [<files>]
-bs# bank size
-e* error file name
-l*> library path
-m* map file name
-o* output file name
-p phys addr in map
-s symbol table only
-sa sort symbol by address
-sl output local symbols
-v verbose
© 2003 COSMIC SoftwareUsing The Linker

Linker Options
Global Command Line Options
The global command line options that the linker accepts are:

-bs# set the window shift to #, which implies that the number of
bytes in a window is 2**#. The default value is 0 (bank
switching disabled). For more information, see the section
“Address Arithmetic” on page 282.

-e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-l*> specify library path. You can specify up to 20 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-m* produce map information for the program being built to
file *.

-o* write output to the file *. This option is required and has no
default value.

-p display symbols with physical address instead of logical
address in the map file.

-s create an output file containing only an absolute symbol
table, but still with an object file format. The resulting file
can then be used in another link to provide the symbol
table of an existing application.

-sa display symbols sort by address instead of alphabetic order
in the map file.

-sl output local symbols in the executable file.

-v be “verbose”.
© 2003 COSMIC Software Using The Linker 273

Linker Options6

274
Segment Control Options
This section describes the segment control options that control the
structure of individual segments of the output module.

A group of options to control a specific segment must begin with a +seg
option. Such an option must precede any group of options so that the
linker can determine which segment the options that follow apply to.
The linker allows up to 255 different segments.

+seg <section> <options> start a new segment loading assembler
section type <section> and build it as directed by the
<options> that follow:

-a* make the current segment follow the segment *, where *
refers to a segment name given explicitly by a -n option.
Options -b, -e and -o cannot be specified if -a has been
specified.

-b* set the physical start address of the segment to *. Option -e
or -a cannot be specified if -b has been specified.

-c do not output any code/data for the segment.

-ck mark the segment you want to check. For more informa-
tion, see “Checksum Computation” on page 288.

-ds# set the bank size for paged addresses calculation. This
option overwrites the global -bs option for that segment.

-e* set the physical end address of the segment to *. Option -b
or -a cannot be specified if -e has been specified.

-f# fill the segment up to the value specified by the -m option
with bytes whose value is #. This option has no effect if no
-m option is specified for that segment.

-i? define the initialization option. Valid options are:
© 2003 COSMIC SoftwareUsing The Linker

Linker Options
-m* set the maximum size of the segment to * bytes. If not
specify, there is no checking on any segment size. If a seg-
ment is declared with the -a option as following a segment
which is marked with the -m option, then set the maximum
available space for all the possible consecutive segments.

-n* set the output name of the segment to *. Segment output
names have at most 15 characters; longer names are trun-
cated. If no name is given with a -n option, the segment
inheritates a default name equal to its assembler section
name.

For example, use this option when you want to generate
the hex records for a particular PROM, such as:

You can generate the hex records for prom1 by typing:

For more information, see Chapter 8, “The chex Utility”.

-it use this segment to host the descriptor and
images copies of initialized data used for auto-
matic data initialization

-id initialize this segment

-ib do not initialize this segment

-is mark this segment as shared data

-ik mark this segment as checksum segment

+seg .text -b0x2000 -n prom1
<object_files>
+seg .text -b0x4000 -n prom2
<object_files>
...

chex -n prom1 file.h11
© 2003 COSMIC Software Using The Linker 275

Linker Options6

276
-o* set the logical start address of the segment to * if -b option
is specified or the logical end address if -e option is speci-
fied. The default is to set the logical address equal to the
physical address. Options -b and -e cannot be specified
both if -o has been specified.

-r* round up the starting address of the segment. The expres-
sion defines the power of two of the alignment value. The
option -r3 will align the start address to an 8 bytes bound-
ary. This option has no effect if the start address is explic-
itly defined by a -b option.

-s* define a space name for the segment. This segment will be
verified for overlapping only against segments defined
with the same space name. See “Overlapping Control” on
page 283.

-v do not verify overlapping for the segment.

-w* set the window size for banked applications, and activate
the automatic bank segment creation.

-x expandable segment. Allow a segment to spill in the next
segment of the same section type if its size exceeds the
value given by the -m option. The next segment must be
declared before the object causing the overflow. This
option has no effect if no -m option is specified for the
expendable segment. Options -e and -w cannot be speci-
fied.

Options defining a numerical value (addresses and sizes) can be entered
as constant, symbols, or simple expression combined them with ‘+’ and
‘-’ operators. Any symbol used has to be defined before to be used,
either by a +def directive or loaded as an absolute symbol from a previ-
ously loaded object file. The operators are applied from left to right
without any priority and parenthesis () are not allowed. Such expres-
sions CANNOT contain any whitespace. For example:

+def START=0x1000
+def MAXSIZE=0x2000
+seg .text -bSTART+0x100 -mMAXSIZE-0x100
© 2003 COSMIC SoftwareUsing The Linker

Linker Options
The first line defines the symbol START equals to the absolute value
1000 (hex value), the second line defines the symbol MAXSIZE equals
to the absolute value 2000 (hex value). The last line opens a .text seg-
ment located at 1100 (hex value) with a maximum size of 1f00 (hex
value). For more information, see the section “Symbol Definition
Option” on page 280.

Unless -b* is given to set the bss segment start address, the bss segment
will be made to follow the last data segment in the output file. Unless
-b* is given to set the data segment start address, the data segment will
be made to follow the last bsct segment in the output file. The bsct and
text segments are set to start at zero unless you specify otherwise by
using -b option. It is permissible for all segments to overlap, as far as
clnk is concerned; the target machine may or may not make sense of
this situation (as with separate instruction and data spaces).

Segment Grouping
Different sections can be redirected directly to the same segment with
the +grp directive:

+grp <section>=<section list>

where <section> is the name of the target section, and <section list> a
list of section names separated by commas. When loading an object file,
each section listed in the right part of the declaration will be loaded as if
it was named as defined in the left part of the declaration. The target
section may be a new section name or the name of an existing section
(including the predefined ones). When using a new name, this directive
has to be preceded by a matching +seg definition.

A new segment of the specified type will not actually be created if the last
segment of the same name has a size of zero. However, the new options
will be processed and will override the previous values.

NOTE

Whitespaces are not allowed aside the equal sign ‘=’ and the commas.
NOTE
© 2003 COSMIC Software Using The Linker 277

Linker Options6

278
Linking Files on the Command line
The linker supports linking objects from the command line. The link
command file has to be modified to indicate where the objects are to be
loaded using the following @# syntax.

@1, @2,... include each individual object file at its positional location
on the command line and insert them at the respective
locations in the link file (@1 is the first object file, and so
on).

@* include all of the objects on the command line and insert
them at this location in the link file.

Example
 Linking objects from the command line:

Include Option
Subparts of the link command file can be included from other files by
using the following option:

+inc* include the file specified by *. This is equivalent to
expanding the text file into the link file directly at the loca-
tion of the +inc line.

clnk -o test.h11 test.lkf file1.o file2.o

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
@1
+seg .text -b0x7000
@2

Is equivalent to

clnk -otest.h11 test.lkf
test.lkf
+seg .text -b0x5000
+seg .data -b0x100
file1.o
+seg .text -b0x7000
file2.o
© 2003 COSMIC SoftwareUsing The Linker

Linker Options
Example
 Include the file “seg2.txt” in the link file “test.lkf”:

Private Region Options
Options that control code regions are:

+new start a new region. A “region” is a user definable group of
input object modules which may have both public and pri-
vate portions. The private portions of a region are local to
that region and may not access or be accessed by anything
outside the region. By default, a new region is given public
access.

+pub make the following portion of a given region public.

+pri make the following portion of a given region private.

Test.lkf:
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
+inc seg2.txt

seg2.txt:
mod1.o mod2.o mod3.o

Resultant link file
+seg .text -b0x5000
+seg .data -b0x100
file1.o file2.o
+seg .text -b0x7000
mod1.o mod2.o mod3.o
© 2003 COSMIC Software Using The Linker 279

Linker Options6

280
Symbol Definition Option
The option controlling symbol definition and aliases is:

+def* define new symbols to the linker. The string * must be of
the form:

• ident=constant where ident is a valid identifier and
constant is a valid constant expressed with the standard
C language syntax. This form is used to add ident to the
symbol table as a defined absolute symbol with a value
equal to constant.

• ident1=ident2 where ident1 and ident2 are both
valid identifiers. This form is used to define aliases. The
symbol ident1 is defined as the alias for the symbol
ident2 and goes in the symbol table as an external DEF
(a DEF is an entity defined by a given module.) If
ident2 is not already in the symbol table, it is placed
there as a REF (a REF is an entity referred to by a given
module).

• ident=@section where ident is a valid identifier,
and section is the name of a section specified as the first
argument of a +seg directive. This form is used to add
ident to the symbol table as a defined symbol whose
value is the address of the next byte to be loaded in the
specified section.

• ident=start(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the logical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=end(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the logical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.
© 2003 COSMIC SoftwareUsing The Linker

Linker Options
• ident=pstart(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the physical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=pend(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the physical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

• ident=size(segment) where segment is the name
given to a segment by the -n option. This form is used to
add ident to the symbol table as a defined symbol whose
value is the size of the designated segment. This direc-
tive can be placed anywhere in the link command file,
even before the segment is defined.

For more information about DEFs and REFs, refer to the section “DEFs
and REFs” on page 290.

Reserve Space Option
The following option is used to reserve space in a given segment:

+spc <segment>=<value> reserve <value> bytes of space at the
current location in the segment named <segment>.

+spc <segment>=@section reserve a space at the current location
in the segment named <segment> equal to the current size
of the opened segment where the given section is loaded.
The size is evaluated at once, so if the reference segment
grows after that directive, there is no further modification
of the space reservation. If such a directive is used to
duplicate an existing section, it has to be placed in the link
command file after all the object files.

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE
© 2003 COSMIC Software Using The Linker 281

Section Relocation6

282
Section Relocation
The linker relocates the sections of the input files into the segments of
the output file.

An absolute section, by definition, cannot and should not be relocated.
The linker will detect any conflicts between the placement of this file
and its absolute address given at compile/assemble time.

In the case of a bank switched system, it is still possible for an absolute
section to specify a physical address different from the one and at com-
pile/assembly time, the logical address MUST match the one specified
at compile/assemble time.

Address Arithmetic
The two most important parameters describing a segment are its bias
and its offset, respectively its physical and logical start addresses. In
nonsegmented architectures there is no distinction between bias and off-
set. The bias is the address of the location in memory where the seg-
ment is relocated to run. The offset of a segment will be equal to the
bias. In this case you must set only the bias. The linker sets the offset
automatically.

In the paged architecture of the MC68HC11K4, the bias is the physical
address of the start of the segment in question, as seen from memory.
The offset is the logical address of the start of the segment, as seen from
the processor.

The window shift specified by the -bs# option gives a measure of the
resolution used to hold the bias value of a segment. If the value speci-
fied by the -bs# option is n, then the resolution is 2**n. For example,
the value of n is 13 for the MC68HC11K4.

In segmented architectures, the fundamental relationship between the
bias and the offset is:

Whitespaces are not allowed aside the equal sign ‘=’.
NOTE
© 2003 COSMIC SoftwareUsing The Linker

Setting Bias and Offset
where SR is the actual value used in a segment or page register and BS
is the window shift value you specify with the -bs# option. The linker
will be able to compute the value of the page register, given the bias and
the offset of any segment.

In nonsegmented architectures both BS and SR are usually equal to
zero, so the formula becomes:

Overlapping Control
The linker is verifying that a segment does not overlap any other one,
by checking the physical addresses (bias). This control can be locally
disabled for one segment by using the -v option. For targets implement-
ing separated address spaces (such as bank switching), the linker allows
several segments to be isolated from the other ones, by giving them a
space name with the -s option. In such a case, a segment in a named
space is checked only against the other segments of the same space. The
unnamed segments are checked together.

Setting Bias and Offset
The bias and offset of a segment are controlled by the -b* option and
-o* option. The rules for dealing with these options are described
below.

Setting the Bias
If the -b* option is specified, the bias is set to the value specified by *.
Otherwise, the bias is set to the end of the last segment of the same
name. If the -e* option is specified, the bias is set to value obtain by
subtracting the segment size to the value specified by *.

Setting the Offset
If the -o* option is specified, the offset is set to the value specified by *.
Otherwise, the offset is set equal to the bias.

bias = (SR << BS) + offset

bias = offset
© 2003 COSMIC Software Using The Linker 283

Setting Bias and Offset6

284
Using Default Placement
If none of -b, -e or -o options is specified, the segment may be placed
after another one, by using the -a* option, where * is the name of
another segment. Otherwise, the linker will try to use a default place-
ment based on the segment name. The compiler produces specific sec-
tions for code (.text) and data (.data, .bss, and .bsct). By default, .text
and .bsct segments start at zero, .data segment follows the latest .text
segment, and .bss segment follows the latest .data segment. Note that
there is no default placement for the constants segment .const.
© 2003 COSMIC SoftwareUsing The Linker

Linking Objects
Linking Objects
A new segment is built by concatenating the corresponding sections of
the input object modules in the order the linker encounters them. As
each input section is added to the output segment, it is adjusted to be
relocated relative to the end portion of the output segment so far con-
structed. The first input object module encountered is relocated relative
to a value that can be specified to the linker. The size of the output bss
segment is the sum of the sizes of the input bss sections.

Unless the -v option has been specified on a segment definition, the
linker checks that the segment physical address range does not overlap
any other segment of the application. Logical addresses are not checked
as bank switching creates several segments starting at the same logical
address.

Linking Library Objects
The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it’s modules to avoid
unresolved references. The standard ANSI libraries are provided in
three versions to provide the level of support that your application
needs. This can save a significant amount of code space and execution
time when full ANSI double precision floating point support is not
needed. The first letter after “lib” in each library file denotes the library
type (d for double, f for single precision, and i for integer). and the sec-
ond letter after “lib” specifies the ALU libraries version. See below.

libdM.h11Double Precision Library provides ANSI double precision
floating point support. Link this library before the other
libraries when needed.

libfM.h11 Single Precision Library is used in conjunction with the
+sprec option to force all floats (even variables declared as
doubles) to single precision. This library is used for appli-
cations where only single precision floating point support
is needed. This library is significantly smaller and faster
than the double precision. Link this library before the other
libraries when only single precision floats are used.
© 2003 COSMIC Software Using The Linker 285

Linking Library Objects6

286
libiM.h11 Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can still be
used for arithmetic but not with the standard library. Link
this library before the other libraries when only integer
libraries are needed.

Library Order
You should link your application with the libraries in the following
orders:

For more information, see “Linker Command Line Examples” on page
298.

Machine
Library

Integer
Only

Library

Single
Precision

Floats

Double
Precision

Floats

Standard
Libm.h11

libi.h11 libf.h11 libd.h11

(M & N series) libia.h11 libfa.h11 libda.h11

Integer Only
Application

Single Precision
Float Application

Double Precision
Float Application

libi.h11 libf.h11 libd.h11

libm.h11 libi.h11 libi.h11

libm.h11 libm.h11

The +sprec compiler option MUST be used if you want to use the Single
Precision library in order to suppress normal ANSI float to double pro-
motions.

NOTE

Compiler libraries must be located in a non-banked area of memory or
duplicated in each bank that uses them.

NOTE
© 2003 COSMIC SoftwareUsing The Linker

Automatic Data Initialization
Automatic Data Initialization
The linker is able to configure the executable for an automatic data ini-
tialization. This mechanism is initiated automatically when the linker
finds the symbol __idesc__ in the symbol table, as an undefined sym-
bol. clnk first locates a segment behind which it will add an image of
the data, so called the host segment. The default behaviour is to select
the first .text segment in the executable file, but you can override this by
marking one segment with the -it option.

Then, clnk looks in the executable file for initialized segments. All the
segments .data and .bsct are selected by default, unless disabled explic-
itly by the -ib option. Otherwise, renamed segments may also be
selected by using the -id option. The -id option cannot be specified on a
bss segment, default or renamed. Once all the selected segments are
located, clnk builds a descriptor containing the starting address and
length of each such segment, and moves the descriptor and the selected
segments to the end of the host segment, without relocating the content
of the selected segments.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Initializing data in RAM” in Chapter 3.

Descriptor Format
The created descriptor has the following format:

 dc.w start_prom_address ;starting address of the
; first image in prom

; for each segment:
 dc.b flag ; segment type
 dc.w start_ram_address ; start address of segment in ram
 dc.w end_prom_address ; address of last data byte

; plus one in prom
; after the last segment:
 dc.b 0

The flag byte is used to detect the end of the descriptor, and also to
specify a type for the data segment. The actual value is equal to the
code of the first letter in the segment name.

The end address in PROM of one segment gives also the starting
address in prom of the following segment, if any.
© 2003 COSMIC Software Using The Linker 287

Checksum Computation6

288
The address of the descriptor will be assigned to the symbol __idesc__,
which is used by the crtsi.s startup routine. So all this mechanism will
be activated just by linking the crtsi.h11file with the application, or by
referencing the symbol __idesc__ in your own startup file.

If the host segment has been opened with a -m option giving a maxi-
mum size, clnk will check that there is enough space to move all the
selected segments.

Checksum Computation
This feature is activated by the detection of the symbol __ckdesc__ as
an undefined symbol. This is practically done by calling one of the pro-
vided checksum functions which uses that symbol and returns 0 if the
checksum is correct. This function is provided in the integer library and
is the following:

_checksum() check a 8 bit checksum stored once for all the
selected segments.

You then have to update the link command file in two ways:

1) Mark the segments (usually code segments) you want to check, by
using the -ck option on the +seg line. Note that you need only to
mark the first segment of a hooked list, meaning that if a segment is
declared with -a option as following a segment which is marked
with the -ck option, it will automatically inherit the -ck marker and
will be also checked. Note also that if you are using the automatic
initialization mechanism, and if the code segment hosting the init
descriptor (-it) is also marked with -ck, the init segment and ALL
the initialization copy segments will also be checked.

2) Create an empty segment which will contain the checksum descrip-
tor. This has to be an empty segment, located wherever you want
with a -b or -a option. This segment will NOT be checked, even if
marked or hooked to a marked segment. The linker will fill this seg-
ment with a data descriptor allowing the checking function to scan
all the requested segments and compute the final crc. This segment
has to be specially marked with the option -ik to allow the linker to
recognize it as the checksum segment.
© 2003 COSMIC SoftwareUsing The Linker

Checksum Computation
Here is an example of link command file showing how to use -ck and
-ik:

LINKER EXAMPLE FOR CHECKSUM IMPLEMENTATION
#
mark the first segment of an attached list with -ck
#
+seg .text -b 0x8000 -n code -ck# this segment is marked
+seg .const -a code -n const# this one is implicitly marked
#
create an empty segment for checksum table marked with -ik
#
+seg .cksum -a const -n cksum -ik# checksum segment
#
remaining part should contain the verification code
#
+seg .data -b 0x100
crtsi.h11
test.o
libi.h11
libm.h11
+def __memory=@.bss

The descriptor built by the linker is a list of entries followed by the
expected CRC value, only once if function _checksum() is called. An
entry contains a flag byte, a start address and an end address. The flag
byte is non-zero, and is or'ed with 0x80 if the start address contains a
bank value (two words, page first then start address), otherwise it is just
one word with the start address. The end address is always one word.
The last entry is always followed by a nul byte (seen as an ending flag),
and immediately followed by the expected CRC if function
_checksum()is called. The linker compresses the list of entries by creat-
ing only one entry for contiguous segments (as long as they are in the
same space (-s* option) and in the same bank/page).

The current linker implements only on algorithm. Starting with zero,
the CRC byte/word is first rotated one bit left (a true bit rotation), then
xor'ed with the code byte. The CRC values stored in the checksum
descriptor are the one’s complement value of the expected CRC.
© 2003 COSMIC Software Using The Linker 289

Shared Data Handling6

290
Shared Data Handling
When the compiler is run with a static model allowing shared data,
each function not using the stack (nostack function) reserves a memory
area but does not allocate it. Based on the information received from the
debug symbol table, the linker is able to allocate all these areas by over-
lapping those areas corresponding to independent functions, i.e. these
functions that never call each other directly or through other functions.
This feature saves memory while keeping the ability to use arguments
and local variables in nostack functions.

The linker will allocate the global amount of memory in a segment pro-
vided by the user. This segment is marked with the -is option, and has to
be empty. It is located like all other segments using either -b or -a
options, as shown in the following example:

Object files file1 and file2 should not produce any data in a .shared sec-
tion, otherwise the linker will complain and abort the linking process.

DEFs and REFs
The linker builds a new symbol table based on the symbol tables in the
input object modules, but it is not a simple concatenation with adjust-
ments. There are two basic type of symbols that the linker puts into its
internal symbol table: REFs and DEFs. DEFs are symbols that are
defined in the object module in which they occur. REFs are symbols
that are referenced by the object module in which they occur, but are
not defined there.

The linker also builds a debug symbol table based on the debug symbol
tables in any of the input object modules. It builds the debug symbol
table by concatenating the debug symbol tables of each input object

Recursive functions cannot be selected as nostack functions.
NOTE

+seg .text -b0x1000
+seg .data -b0x100
+seg .shared -b0x80 -m0x80 -is
file1 file2
© 2003 COSMIC SoftwareUsing The Linker

Special Topics
module in the order it encounters them. If debugging is not enabled for
any of input object module, the debug symbol table will be of zero
length.

An incoming REF is added to the symbol table as a REF if that symbol
is not already entered in the symbol table; otherwise, it is ignored (that
reference has already been satisfied by a DEF or the reference has
already been noted). An incoming DEF is added to the symbol table as
a DEF if that symbol is not already entered in the symbol table; its
value is adjusted to reflect how the linker is relocating the input object
module in which it occurred. If it is present as a REF, the entry is
changed to a DEF and the symbol’s adjusted value is entered in the
symbol table entry. If it is present as a DEF, an error occurs (multiply
defined symbol).

When the linker is processing a library, an object module in the library
becomes an input object module to the linker only if it has at least one
DEF which satisfies some outstanding REF in the linker's internal sym-
bol table. Thus, the simplest use of clnk is to combine two files and
check that no unused references remain.

The executable file created by the linker must have no REFs in its sym-
bol table. Otherwise, the linker emits the error message “undefined sym-
bol” and returns failure.

Special Topics
This section explains some special linker capabilities that may have
limited applicability for building most kinds of microcontroller applica-
tions.

Private Name Regions
Private name regions are used when you wish to link together a group
of files and expose only some to the symbol names that they define.
This lets you link a larger program in groups without worrying about
names intended only for local usage in one group colliding with identi-
cal names intended to be local to another group. Private name regions
let you keep names truly local, so the problem of name space pollution
is much more manageable.
© 2003 COSMIC Software Using The Linker 291

Special Topics6

292
An explicit use for private name regions in an MC68HC11 environment
is in building a paged program with duplication of the most used library
functions in each page, in order to avoid extra page commutation. To
avoid complaints when multiple copies of the same file redefine sym-
bols, each such contribution is placed in a private name region accessi-
ble only to other files in the same page.

The basic sequence of commands for each island looks like:

Any symbols defined in <public files> are known outside this private
name region. Any symbols defined in <private libraries> are known
only within this region; hence they may safely be redefined as private to
other regions as well.

Renaming Symbols
At times it may be desirable to provide a symbol with an alias and to
hide the original name (i.e., to prevent its definition from being used by
the linker as a DEF which satisfies REFs to that symbol name). As an
example, suppose that the function func in the C library provided with
the compiler does not do everything that is desired of it for some special
application. There are three methods of handling this situation (we will
ignore the alternative of trying to live with the existing function’s defi-
ciencies).

The first method is to write a new version of the function that performs
as required and link it into the program being built before linking in the
libraries. This will cause the new definition of func to satisfy any refer-
ences to that function, so the linker does not include the version from
the library because it is not needed. This method has two major draw-
backs: first, a new function must be written and debugged to provide
something which basically already exists; second, the details of exactly
what the function must do and how it must do it may not be available,
thus preventing a proper implementation of the function.

+new <public files> +pri <private libraries>

All symbols defined in a private region are local symbols and will not
appear in the symbol table of the output file.

NOTE
© 2003 COSMIC SoftwareUsing The Linker

Special Topics
The second approach is to write a new function, say my_func, which
does the extra processing required and then calls the standard function
func. This approach will generally work, unless the original function
func is called by other functions in the libraries. In that case, the extra
function behavior cannot occur when func is called from library func-
tions, since it is actually my_func that performs it.

The third approach is to use the aliasing capabilities of the linker. Like
the second method, a new function will be written which performs the
new behavior and then calls the old function. The twist is to give the old
function a new name and hide its old name. Then the new function is
given the old function’s name and, when it calls the old function, it uses
the new name, or alias, for that function. The following linker script
provides a specific example of this technique for the function func:

line 1 +seg .text -b 0x1000
line 2 +seg .data -b0
line 3 +new
line 4 Crts.xx
line 5 +def _oldfunc=_func
line 6 +pri func.o
line 7 +new
line 8 prog.o newfunc.o
line 9 <libraries>

The main thing to note here is that func.o and new_func.o both define a
(different) function named func. The second function func defined in
newfunc.o calls the old func function by its alias oldfunc.

Name regions provide limited scope control for symbol names. The
+new command starts a new name region, which will be in effect until
the next +new command. Within a region there are public and private
name spaces. These are entered by the +pub and +pri commands; by
default, +new starts in the public name space.

The function name func as referenced here is the name as seen by the C
programmer. The name which is used in the linker for purposes of alias-
ing is the name as seen at the object module level. For more information
on this transformation, see the section “Interfacing C to Assembly Lan-
guage” in Chapter 3.

NOTE
© 2003 COSMIC Software Using The Linker 293

Special Topics6

294
Lines 1,2 are the basic linker commands for setting up a separate I/D
program. Note that there may be other options required here, either by
the system itself or by the user.

Line 3 starts a new region, initially in the public name space.

Line 4 specifies the startup code for the system being used.

Line 5 establishes the symbol _oldfunc as an alias for the symbol _func.
The symbol _oldfunc is entered in the symbol table as a public defini-
tion. The symbol _func is entered as a private reference in the current
region.

Line 6 switches to the private name space in the current region. Then
func.o is linked and provides a definition (private, of course) which sat-
isfies the reference to _func.

Line 7 starts a new name region, which is in the public name space by
default. Now no reference to the symbol _func can reach the definition
created on Line 6. That definition can only be reached now by using the
symbol _oldfunc, which is publicly defined as an alias for it.

Line 8 links the user program and the module newfunc.o, which pro-
vides a new (and public) definition of _func. In this module the old ver-
sion is accessed by its alias. This new version will satisfy all references
to _func made in prog.o and the libraries.

Line 9 links in the required libraries.

The rules governing which name space a symbol belongs to are as fol-
lows:

• Any symbol definition in the public space is public and satisfies
all outstanding and future references to that symbol.

• Any symbol definition in the private space of the current region is
private and will satisfy any private reference in the current region.

• All private definitions of a symbol must occur before a public def-
inition of that symbol. After a public definition of a symbol, any
© 2003 COSMIC SoftwareUsing The Linker

Special Topics
other definition of that symbol will cause a “multiply defined sym-
bol” error.

• Any number of private definitions are allowed, but each must be
in a separate region to prevent a multiply defined symbol error.

• Any new reference is associated with the region in which the ref-
erence is made. It can be satisfied by a private definition in that
region, or by a public definition. A previous definition of that
symbol will satisfy the reference if that definition is public, or if
the definition is private and the reference is made in the same
region as the definition.

• If a new reference to a symbol occurs, and that symbol still has an
outstanding unsatisfied reference made in another region, then
that symbol is marked as requiring a public definition to satisfy it.

• Any definition of a symbol must satisfy all outstanding references
to that symbol; therefore, a private definition of a symbol which
requires a public definition causes a blocked symbol reference
error.

• No symbol reference can “reach” any definition made earlier than
the most recent definition.

Absolute Symbol Tables
Absolute Symbol tables are used to export symbols from one application
to another, to share common functions for instance, or to use functions
already built in a ROM, from an application downloaded into RAM.
The linker option -s will modify the output file in order to contain only
a symbol table, without any code, but still with an object file format, by
using the same command file used to build the application itself. All
symbols are flagged as absolute symbols. This file can be used in
another link, and will then transmit its symbol table, allowing another
application to use those symbols as externals. Note that the linker does
not produce any map even if requested, when used with the -s option.

The basic sequence of commands looks like:
© 2003 COSMIC Software Using The Linker 295

Special Topics6

296
The first link builds the application itself using the appli.lkf command
file. The second link uses the same command file and creates an object
file containing only an absolute symbol table. This file can then be used
as an input object file in any other link command file.

clnk -o appli.h11 -m appli.map appli.lkf
clnk -o appli.sym -s appli.lkf
© 2003 COSMIC SoftwareUsing The Linker

Description of The Map File
Description of The Map File
The linker can output a map file by using the -m option. The map file
contains 4 sections: the Segment section, the Modules section, the Stack
Usage section and the Symbols section.

Segment Describe the different segments which compose the appli-
cation, specifying for each of them: the start address (in
hexa), the end address (in hexa), the length (in decimal),
and the name of the segment. Note that the end value is the
address of the byte following the last one of the segment,
meaning that an empty segment will have the same start
and end addresses. If a segment is initialized, it is dis-
played twice, the first time with its final address, the sec-
ond time with the address of the image copy.

Modules List all the modules which compose the application, giving
for each the description of all the defined sections with the
same format as in the Segment section. If an object has
been assembled with the -pl option, local symbols are dis-
played just after the module description.

Stack Usage Describe the amount of memory needed for the stack.
When using a stack model, each function of the applica-
tion is listed by its name, followed by a ‘>’ character indi-
cating that this function is not called by any other one (the
main function, interrupt functions, task entries...). The first
number is the total size of the stack used by the function
including all the internal calls. The second number
between braces shows the stack need for that function
alone. The entry may be flagged by the keyword “Recur-
sive” meaning that this function is itself recursive or is
calling directly or indirectly a recursive function, and that
the total stack space displayed is not accurate. The linker
may detect potential but not actual recursive functions
when such functions are called by pointer. When using a
memory model each function using space in the simulated
stack is listed by its name followed by the address range of
its local area, and followed by two numbers between
braces. The first one indicates how many bytes are used for
© 2003 COSMIC Software Using The Linker 297

Return Value6

298
locals and the second one indicates how many bytes are
used for arguments. Functions locally redirected to the
physical stack are also displayed with their stack usage.
The linker displays at the end of the list a total stack size
assuming interrupt functions cannot be themselves inter-
rupted. Interrupt frames and machine library calls are
properly counted.

Symbols List all the symbols defined in the application specifying
for each its name, its value, the section where it is defined,
and the modules where it is used. If the target processor
supports bank switching, addresses are displayed as logical
addresses by default. Physical addresses can be displayed
by specifying the -p option on the linker command line.

Return Value
clnk returns success if no error messages are printed to STDOUT; that
is, if no undefined symbols remain and if all reads and writes succeed.
Otherwise it returns failure.

Linker Command Line Examples
This section shows you how to use the linker to perform some basic
operations.

A linker command file consists of linker options, input and output file,
and libraries. The options and files are read from a command file by the
linker. For example, to create an MC68HC11 file from file.o you can
type at the system prompt:

where myapp.lkf contains:

+seg .text -b0x1000 -n .text # start eprom address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address
\cx32\lib\crts.h11 # startup object file
file1.o file2.o # input object files
\cx32\lib\libi.h11 # C library

clnk -o myapp.h11 myapp.lkf
© 2003 COSMIC SoftwareUsing The Linker

Linker Command Line Examples
\cx32\lib\libm.h11 # machine library
+def __memory=@.bss # symbol used by startup

The following link command file is an example for an application that
does not use floating point data types and does not require automatic
initialization.

demo.lkf: link command WITHOUT automatic init
+seg .text -b 0xe000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address
+seg .share -b0x80 -m0x80 -is # shared segment
\cx32\lib\crts.h11 # startup with NO-INIT
acia.o # main program
module1.o # module program
\cx32\lib\libi.h11 # C lib.
\cx32\lib\libm.h11 # machine lib.
+seg .const -b0xffd6 # vectors eprom address
vector.o # reset & interrupt vectors
+def __memory=@.bss # symbol used by library
+def __stack=0x00ff # stack pointer initial value

The following link command file is an example for an application that
uses single precision floating point data types and utilizes automatic
data initialization.

demo.lkf: link command WITH automatic init
+seg .text -b 0xe000 -n.text # program start address
+seg .const -a .text # constants follow program
+seg .data -b0x100 # start data address
+seg .share -b0x80 -m0x80 -is # shared segment
\cx32\lib\crtsi.h11 # startup with auto-init
acia.o # main program
module1.o # module program
\cx32\lib\libf.h11 # single prec.
\cx32lib\libi.h11 # integer lib.
\cx32\lib\libm.h11 # machine lib.
+seg .const -b0xffd6 # vectors eprom address
vector.o # reset & interrupt vectors
+def __memory=@.bss # end of bss segment
+def __stack=0x001ff # stack pointer initial value
© 2003 COSMIC Software Using The Linker 299

CHAPTER

7

Debugging Support
This chapter describes the debugging support available with the cross
compiler targeting the MC68HC11. There are two levels of debugging
support available, so you can use either the COSMIC’s Zap C source
level cross debugger or your own debugger or in-circuit emulator to
debug your application. This chapter includes the following sections:

• Generating Debugging Information

• Generating Line Number Information

• Generating Data Object Information

• The cprd Utility

• The clst utility
© 2003 COSMIC Software Debugging Support 301

Generating Debugging Information7

302
Generating Debugging Information
The compiler generates debugging information in response to command
line options you pass to the compiler as described below. The compiler
can generate the following debugging information:

1 line number information that allows COSMIC’s C source level
debugger or another debugger or emulator to locate the address of the
code that a particular C source line (or set of lines) generates. You
may put line number information into the object module in either of
the two formats, or you can generate both line number information
and information about program data and function arguments, as
described below.

2 information about the name, type, storage class and address (abso-
lute or relative to a stack offset) of program static data objects, func-
tion arguments, and automatic data objects that functions declare.
Information about what source files produced which relocatable or
executable files. This information may be localized by address
(where the output file resides in memory). It may be written to a file,
sorted by address or alphabetical order, or it may be output to a
printer in paginated or unpaginated format.

Generating Line Number Information
The compiler puts line number information into a special debug symbol
table. The debug symbol table is part of the relocatable object file pro-
duced by a compilation. It is also part of the output of the clnk linker.
You can therefore obtain line number information about a single file, or
about all the files making up an executable program. However, the
compiler can produce line number information only for files that are
fewer than 65,535 lines in length.

Generating Data Object Information
The +debug option directs the compiler to generate information about
data objects and function arguments and return types. The debugging
information the compiler generates is the information used by the
COSMIC’s C source level cross debugger or another debugger or emu-
lator. The information produced about data objects includes their name,
scope, type and address. The address can be either absolute or relative
to a stack offset.
© 2003 COSMIC SoftwareDebugging Support

Generating Debugging Information
As with line number information alone, you can generate debugging
information about a single file or about all the files making up an exe-
cutable program.

cprd may be used to extract the debugging information from files com-
piled with the +debug option, as described below.
© 2003 COSMIC Software Debugging Support 303

The cprd Utility7

304
The cprd Utility
cprd extracts information about functions and data objects from an
object module or executable image that has been compiled with the
+debug option. cprd extracts and prints information on the name, type,
storage class and address (absolute or offset) of program static data
objects, function arguments, and automatic data objects that functions
declare. For automatic data, the address provided is an offset from the
frame pointer. For function arguments, the address provided is an offset
from the stack pointer.

Command Line Options
cprd accepts the following command line options, each of which is
described in detail below:

where <file> is an object file compiled from C source with the com-
piler command line option +debug set.

-fc* print debugging information only about the function *. By
default, cprd prints debugging information on all functions
in <file>. Note that information about global data objects
is always displayed when available.

-fl* print debugging information only about the file *. By
default, cprd prints debugging information on all C source
files.

-o* print debugging information to file *. Debugging informa-
tion is written to your terminal screen by default.

-r Display structure fields with their offset.

-s Display object size in bytes.

cprd [options] file
-fc* select function name
-fl* select file name
-o* output file name
-r recurse structure fields
-s display object size
© 2003 COSMIC SoftwareDebugging Support

The cprd Utility
By default, cprd prints debugging information about all functions and
global data objects in <file>.

Examples
The following example show sample output generated by running the
cprd utility on an object file created by compiling the program acia.c
with the compiler option +debug set.

Information extracted from acia.h11
source file acia.c:

(no globals)

unsigned char getch() lines 25 to 35 at 0xf016-0xf030
 auto unsigned char c at -1 from frame pointer

void outch() lines 39 to 44 at 0xf031-0xf03d
 argument unsigned char c at 3 from frame pointer

void recept() lines 50 to 56 at 0xf03e-0xf113
 (no locals)

void main() lines 62 to 71 at 0xf114-0xf06b
 (no locals)

cprd acia.h11
© 2003 COSMIC Software Debugging Support 305

The clst utility7

306
The clst utility
The clst utility takes relocatable or executable files as arguments, and
creates listings showing the C source files that were compiled or linked
to obtain those relocatable or executable files. It is a convenient utility
for finding where the source statements are implemented.

To use clst efficiently, its argument files must have been compiled with
the +debug option.

clst can be instructed to limit its display to files occupying memory in a
particular range of addresses, facilitating debugging by excluding extra-
neous data. clst will display the entire content of any files located
between the endpoints of its specified address range.

Command Line Options
clst accepts the following command line options, each of which is
described in detail below:

-a when set, cause clst to list files in alphabetical order. The
default is that they are listed by increasing addresses.

-f*> specify * as the file to be processed. Default is to process
all the files of the application. Up to 10 files can be speci-
fied.

-i*> read string * to locate the source file in a specific directory.
Source files will first be searched for in the current direc-
tory, then in the specified directories in the order they were
given to clst. You can specify up to 20 different paths Each
path is a directory name, not terminated by any directory
separator character.

clst [options> file
-a list file alphabetically
-f*> process selected file
-i*> source file
-l# page length
-o* output file name
-p suppress pagination
-r* specify a line range #:#
© 2003 COSMIC SoftwareDebugging Support

The clst utility
-l# when paginating output, make the listings # lines long. By
default, listings are paginated at 66 lines per page.

-o* redirect output from clst to file *. You can achieve a simi-
lar effect by redirecting output in the command line.

is equivalent to:

-p suppress pagination. No page breaks will be output.

-r#:# where #:# is a range specification. It must be of the form
<number>:<number>. When this flag is specified, only
those source files occupying memory in the specified
range will be listed. If part of a file occupies memory in the
specified range, that file will be listed in its entirety. The
following is a valid use of -r:

clst -o acia.lst acia.h11

clst acia.h11 >acia.lst

-r 0xe000:0xe200
© 2003 COSMIC Software Debugging Support 307

CHAPTER

8

Programming Support
This chapter describes each of the programming support utilities pack-
aged with the C cross compiler targeting the MC68HC11. The follow-
ing utilities are available:

The assembler is described in Chapter 5, “Using The Assembler”. The
linker is described in Chapter 6, “Using The Linker”. Support for
debugging is described in Chapter 7, “Debugging Support”.

The description of each utility tells you what tasks it can perform, the
command line options it accepts, and how you use it to perform some
commonly required operations. At the end of the chapter are a series of
examples that show you how to combine the programming support util-
ities to perform more complex operations.

cbank fill page window

chex translate object module format

clabs generate absolute listings

clib build and maintains libraries

cobj examine objects modules

cv695 generate IEEE695 format
© 2003 COSMIC Software Programming Support 309

The cbank Utility8

310
The cbank Utility
You use the cbank utility to optimize the bank filling with object files.
cbank is given a list of object files and a bank size. It reorganizes the
object list in order to fill as completely as possible the smallest amount
of banks and produces as result a text file containing the object file
names in the proper order. If the input file also contains bank start
addresses (using the linker syntax), segment opening directives will be
also output at the proper place with the specified information. Other-
wise the object file list is supposed to be used in conjunction with the
-w option of the linker allowing an automatic bank filling. In any cases,
the file produced by the cbank utility can be directly inserted in the
linker command file by a +inc directive.

Command Line Options
cbank accepts the following command line options, each of which is
described in detail below:

-m# fill a maximum of # banks. If cbank needs more banks than
the specified number, it will report an error message. By
default, cbank fills as many banks as necessary.

-n* sort sections whose name is equal to the string *. By
default, cbank sorts .text sections.

-o* write result to file *. The default is STDOUT.

-w## set the bank size to ##.

Return Status
cbank returns success if no error messages are printed. Otherwise it
returns failure.

cbank [options] file
-m# maximum available banks
-n* name of segment to pack
-o* output file name
-w## bank size
© 2003 COSMIC SoftwareProgramming Support

The cbank Utility
Examples
The following command:

will generate bk_list as the result file, with a page window of size
0x1000 from the given list obj_list which contains:

file1.o
file2.o
file3.o
file4.o

The result will be:
--- bank 1 --- # (3876/4096)
file1.o
file3.o
--- bank 2 --- # (3900/4096)
file2.o
--- bank 3 --- # (474/4096)
file4.o

The first value is the space used in the bank, and the second value is the
bank size.

Bank start addresses can be included into the input file, such as:

-b0x10000 -o 0x8000 -n bank1
-b0x18000 -o 0x8000 -n bank2
-b0x20000 -o 0x8000 -n bank3
file1.o
file2.o
file3.o
file4.o

The result will be:
+seg .text -b0x10000 -o0x8000 -n bank1 # (3876/4096)
file1.o
file3.o
+seg .text -b0x18000 -o0x8000 -n bank2 # (3900/4096)
file2.o
+seg .text -b0x20000 -o0x8000 -n bank3 # (474/4096)
file4.o

cbank -o bk_list -w 0x1000 obj_list
© 2003 COSMIC Software Programming Support 311

The chex Utility8

312
The chex Utility
You use the chex utility to translate executable images produced by
clnk to one of several hexadecimal interchange formats. These formats
are: Motorola S-record format, and Intel standard hex format. You can
also use chex to override text and data biases in an executable image or
to output only a portion of the executable.

The executable image is read from the input file <file>.

Command Line Options
chex accepts the following command line options, each of which is
described in detail below:

-a## the argument file is a considered as a pure binary file and
is the output address of the first byte.

-b## substract ## to any address before output.

-e## define ## as the entry point address encoded in the dedi-
cated record of the output format, if available.

-f? define output file format. Valid options are:

chex [options] file
-a## absolute file start address
-b## address bias
-e## entry point address
-f? output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-o* output file name
-p use paged address format
-pl# page number for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-x*> exclude named segments
© 2003 COSMIC SoftwareProgramming Support

The chex Utility
Default is to produced Motorola S-Records (-fm). Any
other letter will select the default format.

-h do not output the header sequence if such a sequence exists
for the selected format.

+h* insert * in the header sequence if such a sequence exists for
the selected format.

-m# output # maximum data bytes per line. Default is to output
32 bytes per line.

-n*> output only segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will all be produced. This option is used in
combination with the -n option of the linker.

-o* write output module to file *. The default is STDOUT.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

-pl# specify the page value of the segment localized between
0x8000 and 0xc000 when using a linear non-banked
application. This option enforces a paged format for this
segment.

-pn behaves as -p but only when logical address is inside the
banked area. This option has to be selected when produc-
ing an hex file for the Noral debugger.

i Intel hex format

m Motorola S19 format

2 Motorola S2 format

3 Motorola S3 format
© 2003 COSMIC Software Programming Support 313

The chex Utility8

314
-pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped. This option has to be selectd
when producing an hex file for Promic tools.

-s sort the output addresses in increasing order.

-x*> do not output segments whose name is equal to the string
*. Up to twenty different names may be specified on the
command line. If there are several segments with the same
name, they will not all be output.

Return Status
chex returns success if no error messages are printed; that is, if all
records are valid and all reads and writes succeed. Otherwise it returns
failure.

Examples
The file hello.c, consisting of:

when compiled produces the following the following Motorola
S-record format:

S00A000068656C6C6F2E6F44
S1110000020068656C6C6F20776F726C640090
S9030000FC

and the following Intel standard hex format:

:0E000000020068656C6C6F20776F726C640094
:00000001FF

char *p = {“hello world”};

chex hello.o

chex -fi hello.o
© 2003 COSMIC SoftwareProgramming Support

The clabs Utility
The clabs Utility
clabs processes assembler listing files with the associated executable
file to produce listing with updated code and address values.

clabs decodes an executable file to retrieve the list of all the files which
have been used to create the executable. For each of these files, clabs
looks for a matching listing file produced by the compiler (“.ls” file). If
such a file exists, clabs creates a new listing file (“.la” file) with abso-
lute addresses and code, extracted from the executable file.

To be able to produce any results, the compiler must have been used
with the ‘-l’ option.

Command Line Options
clabs accepts the following command line options, each of which is
described in detail below.

-a process also files located in libraries. Default is to process
only all the files of the application.

-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-l process files in the current directory only. Default is to
process all the files of the application.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

clabs [options] file
-a process also library files
-cl* listings files
-l restrict to local directory
-p use paged address format
-pn use paged address in bank only
-pp use paged address with mapping
-r* relocatable listing suffix
-s* absolute listing suffix
-v echo processed file names
© 2003 COSMIC Software Programming Support 315

The clabs Utility8

316
-pn behaves as -p but only when logical address is inside the
banked area.

-pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped.

-r* specify the input suffix, including or not the dot ‘.’ charac-
ter. Default is “.ls”

-s* specify the output suffix, including or not the dot ‘.’ char-
acter. Default is “.la”

-v be verbose. The name of each module of the application is
output to STDOUT.

<file> specifies one file, which must be in executable format.

Return Status
clabs returns success if no error messages are printed; that is, if all reads
and writes succeed. An error message is output if no relocatable listing
files are found. Otherwise it returns failure.

Examples
The following command line:

will output:

crts.ls
acia.ls
vector.ls

and creates the following files:

crts.la
acia.la
vector.la

The following command line:

clabs -v acia.h11
© 2003 COSMIC SoftwareProgramming Support

The clabs Utility
will look for files with the suffix “.lst”:

The following command line:

will generate:

crts.lx
acia.lx
vector.lx

clabs -r.lst acia.h11

clabs -s.lx acia.h11
© 2003 COSMIC Software Programming Support 317

The clib Utility8

318
The clib Utility
clib builds and maintains object module libraries. clib can also be used
to collect arbitrary files in one place. <library> is the name of an exist-
ing library file or, in the case of replace or create operations, the name
of the library to be constructed.

Command Line Options
clib accepts the following command line options, each of which is
described in detail below:

-a include absolute symbols in the library symbol table.

-c create a library containing <files>. Any existing <library>
of the same name is removed before the new one is cre-
ated.

-d delete from the library the zero or more files in <files>.

-i* take object files from a list *. You can put several files per
line or put one file per line. Each lines can include com-
ments. They must be prefixed by the ‘#’ character. If the
command line contains <files>, then <files> will be also
added to the library.

-l when a library is built with this flag set, all the modules of
the library will be loaded at link time. By default, the
linker only loads modules necessary for the application.

clib [options] <library> <files>
-a accept absolute symbols
-c create a new library
-d delete modules from library
-i* object list filename
-l load all library at link
-r replace modules in library
-s list symbols in library
-t list files in library
-v be verbose
-x extract modules from library
© 2003 COSMIC SoftwareProgramming Support

The clib Utility
-r in an existing library, replace the zero or more files in
<files>. If no library <library> exists, create a library
containing <files>. The files in <files> not present in the
library are added to it.

-s list the symbols defined in the library with the module
name to which they belong.

-t list the files in the library.

-v be verbose

-x extract the files in <files> that are present in the library
into discrete files with the same names. If no <files> are
specified, all files in the library are extracted.

At most one of the options -[c r t x] may be specified at the same time.
If none of these is specified, the -t option is assumed.

Return Status
clib returns success if no problems are encountered. Otherwise it
returns failure. After most failures, an error message is printed to
STDERR and the library file is not modified. Output from the -t, -s
options, and verbose remarks, are written to STDOUT.

Examples
To build a library and check its contents:

will output:

one.o
two.o
three.o

To build a library from a list file:

clib -c libc one.o two.o three.o
clib -t libc

clib -ci list libc six.o seven.o
© 2003 COSMIC Software Programming Support 319

The clib Utility8

320
where list contains:

files for the libc library
one.o
two.o
three.o
four.o
five.o
© 2003 COSMIC SoftwareProgramming Support

The cobj Utility
The cobj Utility
You use cobj to inspect relocatable object files or executable. Such files
may have been output by the assembler or by the linker. cobj can be
used to check the size and configuration of relocatable object files or to
output information from their symbol tables.

Command Line Options
cobj accepts the following options, each of which is described in detail
below.

<file> specifies a file, which must be in relocatable format or executa-
ble format.

-d output in hexadecimal the data part of each section.

-h display all the fields of the object file header.

-n display the name, size and attribute of each section.

-o* write output module to file *. The default is STDOUT.

-r output in symbolic form the relocation part of each section.

-s display the symbol table.

-v display seek addresses inside the object file.

-x display the debug symbol table.

If none of these options is specified, the default is -hns.

cobj [options] file
-d output data flows
-h output header
-n output sections
-o* output file name
-r output relocation flows
-s output symbol table
-v display file addresses
-x output debug symbols
© 2003 COSMIC Software Programming Support 321

The cobj Utility8

322
Return Status
cobj returns success if no diagnostics are produced (i.e. if all reads are
successful and all file formats are valid).

Examples
For example, to get the symbol table:

symbols:

_main: 0000003e section .text defined public
_outch: 0000001b section .text defined public
_buffer: 00000000 section .bss defined public
_ptecr: 00000000 section .bsct defined public zpage
_getch: 00000000 section .text defined public
_ptlec: 00000002 section .bsct defined public zpage
_recept: 00000028 section .text defined public

The information for each symbol is: name, address, section to which it
belongs and attribute.

cobj -s acia.o
© 2003 COSMIC SoftwareProgramming Support

The cv695 Utility
The cv695 Utility
cv695 is the utility used to convert a file produced by the linker into an
IEEE695 format file.

Command Line Options
cv695 accepts the following options, each of which is described in
detail below.

<file> specifies a file, which must be in executable format.

-V4 output information as per as cv695 converter V4.x version.
This flag is provided for compatibility with older version
of cv695 version. DO NOT USE UNLESS SPECIFI-
CALLY INSTRUCTION TO DO SO.

+bit patch bit variables into chars because IEEE695 format
does not handle bit variables.

-dpage output banked data addresses. DO NOT USE THIS
OPTION ON NON BANKED DATA APPLICATION.
THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE MC68HC12.

-d dump to the screen the interface information such as:
frame coding, register coding, e.g. all the processor spe-
cific coding for IEEE (note: some of these codings have
been chosen by COSMIC because no specifications exist
for them in the current published standard).

cv695 [options] file
+V4 do not offset locals
+bit patch bit variables into chars
-d display usage info
+dpage file uses data paging (HC12 only)
-mod? select compiler model
+old produce old format
-o* output file name
+page# define pagination (HC12 only)
-rb reverse bitfield (L to R)
-v be verbose
© 2003 COSMIC Software Programming Support 323

The cv695 Utility8

324
THIS INFORMATION IS ONLY RELEVANT FOR
WRITING A READER OF THE PRODUCED IEEE
FORMAT.

-mod? where ? is a character used to specify the compilation
model selected for the file to be converted.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC16.

This flag mimics the flag used with C. Acceptable values
are:

+old output old format for MRI.

-o* where * is a filename. * is used to specify the output file
for cv695. By default, if -o is not specified, cv695 send its
output to the file whose name is obtained from the input
file by replacing the filename extension with “.695”.

+page# output addresses in paged mode where # specifies the page
type:

By default linear physical addresses are output.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC12.

c for compact model

s for short model

t for tiny model

l for large model

0 for no paging.

1 for pages with PHYSICAL ADDRESSES

2 for pages with banked addresses
<page><offset_in_page>
© 2003 COSMIC SoftwareProgramming Support

The cv695 Utility
-rb reverse bitfield from left to right.

-v select verbose mode. cv695 will display information about
its activity.

Return Status
cv695 returns success if no problems are encountered. Otherwise it
returns failure.

Examples
Under MS/DOS, the command could be:

and will produce: C:\test\basic.695

and the following command:

will produce: file

Under UNIX, the command could be:

and will produce: test/basic.695

cv695 C:\test\basic.h11

cv695 -o file C:\test\basic.h11

cv695 /test/basic.h11
© 2003 COSMIC Software Programming Support 325

APPENDIX

A

Compiler Error
Messages

This appendix lists the error messages that the compiler may generate in
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

• Parser (cp6811) Error Messages

• Code Generator (cg6811) Error Messages

• Assembler (ca6811) Error Messages

• Linker (clnk) Error Messages
© 2003 COSMIC Software Compiler Error Messages 327

Parser (cp6811) Error MessagesA

328
Parser (cp6811) Error Messages
<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - a function or a variable is never defined

FlexLM <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asm is larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a # operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified

bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a ## operator in
a #define macro is missing

bad #asm directive - a #asm directive is not entered at a valid declara-
tion or instruction boundary

bad #define syntax - a #define is not followed by an identifier

bad #elif expression - a #elif is not followed by a constant expression

bad #else - a #else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a #endasm directive is not closing a previous
#asm directive
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
bad #endif - a #endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name

bad #ifndef syntax - extra characters are found after the symbol name

bad #include syntax - extra characters are found after the file name

bad #pragma section directive - syntax for the #pragma section direc-
tive is incorrect

bad #pragma space directive - syntax for the #pragma space directive
is incorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - the first argument passed to _asm is miss-
ing or is not a character string

bad alias expression - alias definition is not a valid expression

bad alias value - alias definition is not a constant expression

bad bit number - a bit number is not a constant between 0 and 7

bad character <character> - <character> is not part of a legal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by a right parenthesis

bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments
© 2003 COSMIC Software Compiler Error Messages 329

Parser (cp6811) Error MessagesA

330
bad macro argument - a parameter in a #define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad return type for inline function - inline function must be declared
with void return type

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol defintion - the syntax of a symbol defined by the -d option
on the command line is not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing

can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a #undef has been attempted on a prede-
fined macro

compare out of range - a comparison is detected as beeing always true
or always false (+strict)
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
const assignment - a const object is specified as left operand of an
assignment operator

constant assignement in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - a default label has been specified more than once in
a switch statement

embedded usage of tag name <name> - a structure/union definition
contains a reference to itself.

enum size unknow - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in a real constant is
too large for the target encoding

float value too large for integer cast - a float constant is too large to be
casted in an integer

hexadecimal constant too large - an hexadecimal constant is too large
to be represented on an integer

illegal storage class - storage class is not legal in this context

illegal type specification - type specification is not recognizable

illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)
© 2003 COSMIC Software Compiler Error Messages 331

Parser (cp6811) Error MessagesA

332
implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structures must be
compatible for assignment

incomplete #elif expression - a #elif is followed by an incomplete
expression
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
incomplete #if expression - a #if is followed by an incomplete expres-
sion

incomplete type - structure type is not followed by a tag or definition

integer constant too large - a decimal constant is too large to be repre-
sented on an integer

invalid case - a case label has been specified outside of a switch state-
ment

invalid default - a default label has been specified outside of a switch
statement

invalid ? test expression - the first expression of a ternary operator
(? :) is not a testable expression

invalid address operand - the “address of” operator has been applied
to a register variable or an rvalue expression

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object

invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with a dimension
which is not a constant expression

invalid binary number - the syntax for a binary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initiliazing a bit variable must be
scalar

invalid bitfield size - a bitfield has been declared with a size larger than
its type size
© 2003 COSMIC Software Compiler Error Messages 333

Parser (cp6811) Error MessagesA

334
invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value

invalid continue - a continue statement may be used only in while, for,
or do statements

invalid do test type - the expression of a do ... while() instruction is not
a testable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression

invalid function member - a function has been declared within a struc-
ture or an union
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to a function

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - the initialization of a local object is incom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference

invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted

invalid shift count type - the right expression of a shift operator is not
an integer
© 2003 COSMIC Software Compiler Error Messages 335

Parser (cp6811) Error MessagesA

336
invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid storage class - storage class is not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator

invalid switch test type - the expression of a switch () instruction must
be of integer type

invalid typedef usage - a typedef identifier is used in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid while test type - the expression of a while () instruction is not a
testable expression

missing ## argument in macro <name> - an argument of a ## opera-
tor in a #define macro is missing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a ‘(’ does not have a balancing ‘)’ in a
defined operator

missing ; in argument declaration - the declaration of a function argu-
ment does not end with ‘;’

missing ; in local declaration - the declaration of a local variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with ‘;’

missing ? test expression - the test expression is missing in a ternary
operator (? :)

missing _asm() argument - the _asm function needs at least one argu-
ment
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
missing argument - the number of arguments in the actual function call
is less than that of its prototype declaration

missing argument for macro <name> - a macro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument is missing in a pro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - a do ... while () instruction has been speci-
fied with an empty while expression

missing enumeration member - a member of an enumeration is not an
identifier

missing explicit return - a return statement is not ending a non-void
function (+strict)

missing exponent in real - a floating point constant has an empty expo-
nent after the ’e’ or ’E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a #include directive is used, but no file
name is present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=’ character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=’ character not followed by an expression

missing local name - a local variable has been declared without a name
© 2003 COSMIC Software Compiler Error Messages 337

Parser (cp6811) Error MessagesA

338
missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - a simple return statement is used in a non-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a ‘while’ is expected and not found

missing while test expression - an expression in a while instruction is
needed, but none is present

missing : - a ‘:’ is expected and not found

missing ; - a ‘;’ is expected and not found

missing (- a ‘(’ is expected and not found

missing) - a ‘)’ is expected and not found

missing] - a ‘]’ is expected and not found

missing { - a ‘{’ is expected and not found

missing } - a ‘}’ is expected and not found
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
missing } in enum definition - an enumeration list does not end with a
‘}’ character

missing } in struct/union definition - a structure or union member list
does not end with a ‘}’ character

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is already
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is already declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - a typedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an already
declared object

redefined label <name> - a label is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - a tag is specified more than once in a given
scope

repeated type specification - the same type modifier occurs more than
once in a type specification

scalar type required - type must be integer, floating, or pointer
© 2003 COSMIC Software Compiler Error Messages 339

Parser (cp6811) Error MessagesA

340
size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
already specified modifier

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read

token overflow - an expression is too complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initialization is completed for a given object
before initializer list is exhausted

too many spaces modifiers - too many different names for ‘@’ modifi-
ers are used

truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

unbalanced ’ - a character constant does not end with a simple quote

unbalanced “ - a string constant does not end with a double quote

<name> undefined - an undeclared identifier appears in an expression

undefined label <name> - a label is never defined

undefined struct/union - a structure or union is used and is never
defined
© 2003 COSMIC SoftwareCompiler Error Messages

Parser (cp6811) Error Messages
unexpected end of file - last declaration is incomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

zero divide - a divide by zero was detected

zero modulus - a modulus by zero was detected
© 2003 COSMIC Software Compiler Error Messages 341

Code Generator (cg6811) Error MessagesA

342
Code Generator (cg6811) Error Messages
bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

invalid indirect call - a function has been called through a pointer with
more than one char or int argument, or is returning a structure.

redefined space - the version of cp6811 you used to compile your pro-
gram is incompatible with cg6811.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file

PANIC ! bad output file - cannot create output file

PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COSMIC.
© 2003 COSMIC SoftwareCompiler Error Messages

Assembler (ca6811) Error Messages
Assembler (ca6811) Error Messages
The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving a file name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant is too long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment

bad constant - a constant uses illegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators
© 2003 COSMIC Software Compiler Error Messages 343

Assembler (ca6811) Error MessagesA

344
bad string constant - a character constant does not end with a single or
double quote

bad symbol name: <name> - an expected symbol is not an identifier

can't create <name> - the file <name> cannot be opened for writing

can't open <name> - the file <name> cannot be opened for reading

can't open source <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset

illegal size - the size of a ds directive is negative or zero

missing label - a label must be specified for this directive

missing operand - operand is expected for this instruction

missing register - a register is expected for this instruction

missing string - a character string is expected for this directive

relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared

syntax error - an unexpected identifier or operator has been found

too many arguments - a macro has been invoked with more than 9
arguments
© 2003 COSMIC SoftwareCompiler Error Messages

Assembler (ca6811) Error Messages
too many back tokens - an expression is too complex to be evaluated

unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - a divide by zero has been detected
© 2003 COSMIC Software Compiler Error Messages 345

Linker (clnk) Error MessagesA

346
Linker (clnk) Error Messages
-a not allowed with -b or -o - the after option cannot be specified if
any start address is specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a +def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected relocation informa-
tion.

bad section name in +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

can't create map file <file> - map file cannot be created.

can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.

file already linked - an input file has already been processed by the
linker.

function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.
© 2003 COSMIC SoftwareCompiler Error Messages

Linker (clnk) Error Messages
function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.

incomplete +seg directive - the +seg directive syntax is not correct.

incomplete +spc directive - the +spc directive syntax is not correct.

init segment cannot be initialized - the host segment for initialization
cannot be itself initialized.

invalid @ argument - the syntax of an optional input file is not correct.

invalid -i option - the -i directive is followed by an unexpected charac-
ter.

missing command file - a link command file must be specified on the
command line.

missing output file - the -o option must be specified.

missing '=' in +def - the +def directive syntax is not correct.

missing '=' in +spc <segment> - the +spc directive syntax is not cor-
rect.

named segment <segment> not defined - a segment name does not
match already existing segments.

no default placement for segment <segment> - a segment is missing
-a or -b option.

prefixed symbol <name> in conflict - a symbol beginning by ‘f_’ (for
a banked function) also exists without the ‘f’ prefix.

read error - an input object file is corrupted

segment <segment> and <segment> overlap - a segment is overlap-
ping an other segment.
© 2003 COSMIC Software Compiler Error Messages 347

Linker (clnk) Error MessagesA

348
segment <segment> size overflow - the size of a segment is larger than
the maximum value allowed by the -m option.

shared segment not empty - the host segment for shared data is not
empty and cannot be used for allocation.

symbol <symbol> multiply defined - an object file attempts to rede-
fine a symbol.

symbol <symbol> not defined - a symbol has been referenced but
never defined.

unknown directive - a directive name has not been recognized as a
linker directive.
© 2003 COSMIC SoftwareCompiler Error Messages

APPENDIX

B

Modifying Compiler
Operation

This chapter tells you how to modify compiler operation by making
changes to the standard configuration file. It also explains how to create
your own programmable options” which you can use to modify com-
piler operation from the cx6811.cxf.
© 2003 COSMIC Software Modifying Compiler Operation 349

The Configuration FileB

350
The Configuration File
The configuration file is designed to define the default options and
behaviour of the compiler passes. It will also allow the definition of
programmable options thus simplifying the compiler configuration. A
configuration file contains a list of options similar to the ones accepted
for the compiler driver utility cx6811.

These options are described in Chapter 4, “Using The Compiler”.
There are two differences: the option -f cannot be specified in a config-
uration file, and the extra -m option has been added to allow the defini-
tion of a programmable compiler option, as described in the next
paragraph.

The contents of the configuration file cx6811.cxf as provided by the
default installation appears below:

CONFIGURATION FILE FOR 68HC11 COMPILER
Copyright (c) 1996 by COSMIC Software
#
-pu # unsigned char
-i c:\cx32\h6811 # include path
#
-m alu:,alu # alu: use arithmetic unit
-m c0:,tc # c0: use C0 style bank switching
-m debug:x # debug: produce debug info
-m fast:hfast.h # fast: use fast entry protocole
-m nobss:,bss # nobss: do not use bss
-m nocst:,ct # nocst: constant in text section
-m nostk:m0x0004 #nostk:@nostack for all functions
-m nowiden:nw # nowiden: do not expand argument
-m rev:rb # rev: reverse bit field order
-m sprec:f # use float only
-m st0:,st0,,,st1,st2,st3# st0: static not shared in bss
-m st1:,st1,,,st0,st2,st3# st1: static not shared in zpage
-m st2:,st2,,,st0,st1,st3# st2: static shared in bss
-m st3:,st3,,,st0,st1,st2# st3: static shared in zpage
-m zpage:hzpage.h # zpage: @dir for all variables
© 2003 COSMIC SoftwareModifying Compiler Operation

Changing the Default Options
The following command line:

in combination with the above configuration file directs the cx6811
compiler to execute the following commands:

cp6811 -o \2.cx1 -u -i\cx32\h6811 hello.c
cg6811 -o \2.cx2 \2.cx1
co6811 -o \2.cx1 \2.cx2
ca6811 -o hello.o -i\cx32\h6811 \2.cx1

Changing the Default Options
To change the combination of options that the compiler will use, edit
the configuration file and add your specific options using the -p (for the
parser), -g (for the code generator), -o (for the optimizer) and -a (for the
assembler) options. If you specify an invalid option or combination of
options, compilation will not proceed beyond the step where the error
occurred. You may define up to 60 such options.

Creating Your Own Options
To create a programmable option, edit the configuration file and define
the parametrable option with the -m* option. The string * has the fol-
lowing format:

name:popt,gopt,oopt,aopt,exclude...

The first field defines the option name and must be ended by a colon
character ‘:’. The four next fields describe the effect of this option on
the four passes of the compiler, respectively the parser, the generator,
the optimizer and the assembler. These fields are separated by a comma
character ‘,’. If no specific option is needed on a pass, the field has to be
specified empty. The remaining fields, if specified, describe a exclusive
relationship with other defined options. If two exclusive options are
specified on the command line, the compiler will stop with an error
message. You may define up to 20 programmable options. At least one
field has to be specified. Empty fields need to be specified only if a use-
ful field has to be entered after.

cx6811 hello.c
© 2003 COSMIC Software Modifying Compiler Operation 351

ExampleB

352
In the following example:

-m dl1:l,dl1,,,dl2# dl1: line option 1
-m dl2:l,dl2,,,dl1# dl1: line option 2

the two options dl1 and dl2 are defined. If the option +dl1 is specified
on the compiler command line, the specific option -l will be used for the
parser and the specific option -dl1 will be used for the code generator.
No specific option will be used for the optimizer and for the assembler.
The option dl1 is also declared to be exclusive with the option dl2,
meaning that dl1 and dl2 will not be allowed together on the compiler
command line. The option dl2 is defined in the same way.

Example
The following command line

in combination with the previous configuration file directs the cx6811
compiler to execute the following commands:

cp6811-o \2.cx1 -u -mx0004 -rb -i\cx32\h6811 hello.c
cg6811 -o \2.cx2 -bss \2.cx1
co6811 -o \2.cx1 \2.cx2
ca6811-o hello.o -i\cx32\h6811 \2.cx1

cx6811 +nobss +rev +nostk hello.c
© 2003 COSMIC SoftwareModifying Compiler Operation

APPENDIX

C

MC68HC11 Machine
Library

This appendix describes each of the functions in the Machine Library
(libm). These functions provide the interface between the MC68HC11
microcontroller hardware and the functions required by the code gener-
ator. They are described in reference form, and listed alphabetically.

Note that machine library functions handle values as follows:

• integer in d register or in y register. Shift counts are held in the y
register.

• longs and floats in a register pair (“float register” or “long regis-
ter” depending on context) whose low word is the d register and
whose high word is at memory location 2,x, where x is the current
frame pointer.

• pointer to long, float or double in y register.

Library functions whose name end with the letter ‘a’ are called when the
compiler is run with the -dalu option, using the ALU of the MC68HC11
N4 family.

NOTE
© 2003 COSMIC Software MC68HC11 Machine Library 353

C Library - c_check

c_check

C

354
Description
Check stack growth

Syntax

Function
c_check is used to check that the stack pointer is not overwriting valid
data in memory. Users must write their own check functions, because
the memory map is application-dependent. The value in y is the nega-
tive offset from the stack pointer to reach the desired value.

Return Value
c_check returns only if the stack pointer is correct. Otherwise, the
behavior is user-dependent. c_check is called when the -ck flag is spec-
ified (raised) to the code generator (cg6811). This option produces
larger and slower code. It should only be used for test and debugging.
The libraries provided with the compiler include a version of c_check
that always returns. It may be used as a template for user-written ver-
sions of this function.

ldy #size
jsr c_check
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_dadd

c_dadd

Description

Add double to double

Syntax

Function
c_dadd adds the double pointered by the y register to the double poin-
tered by the d register. No check is made for overflow.

Return Value
The resulting value is in left. Flags have no meaningful value upon
return.

See Also
c_dsub

; pointer to left in y
; pointer to right in d

jsr c_dadd
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 355

C Library - c_dcmp

c_dcmp

C

356
Description
Compare double with double

Syntax

Function
c_dcmp compares the double pointered by the y register with the double
pointered by the d register.

Return Value
The N and Z flags are set to reflect the value of (left-right).

; pointer to left in y
; pointer to right in d

jsr c_dcmp
; result in flags
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ddiv

c_ddiv

Description

Divide double by double

Syntax

Function
c_ddiv divides the double pointered by the y register by the double
pointered by the d register.

Return Value
The resulting value is in left. A zero divide leaves the operand
unchanged. Flags have no meaningful value upon return.

; pointer to left in y
; pointer to right in d

jsr c_ddiv
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 357

C Library - c_dmul

c_dmul

C

358
Description
Multiply double by double

Syntax

Function
c_dmul or c_dmula (with ALU) multiplies the double pointered by the y
register by the double pointered by the d register.

Return Value
The resulting value is in left. Flags have no meaningful value upon
return.

; pointer to left in y
; pointer to right in d

jsr c_dmul orjsrc_dmula
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_dneg

c_dneg

Description

Negate a double

Syntax

Function
c_dneg negates the double pointered by the y register.

Return Value
The resulting value is in the memory location pointered by y. Flags
have no meaningful value upon return.

; pointer to operand in y
jsr c_dneg

; result in memory
© 2003 COSMIC Software MC68HC11 Machine Library 359

C Library - c_dsub

c_dsub

C

360
Description
Subtract double from double

Syntax

Function
c_dsub subtracts the double pointered by the d register from the double
pointered by the y register. No check is made for overflow.

Return Value
The resulting value is in left. Flags have no meaningful value upon
return.

See Also
c_dadd

; pointer to left in y
; pointer to right in d

jsr c_dsub
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_dtod

c_dtod

Description

Copy a double into a double

Syntax

Function
c_dtod copies the double pointered by the d register to the double poin-
tered by the y register.

Return Value
The right value is in left. Flags have no meaningful value upon return.

; pointer to left in y
; pointer to right in d

jsr c_dtod
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 361

C Library - c_dtof

c_dtof

C

362
Description
Convert double to float

Syntax

Function
c_dtof converts the double pointered by the y register to a float in float
register. No check is made for overflow.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; pointer to double in y
jsr c_dtof

; result in float register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_dtoi

c_dtoi

Description

Convert double to integer

Syntax

Function
c_dtoi converts the double pointered by the y register to a two byte inte-
ger in d. No check is made for overflow.

Return Value
The resulting value is in d. Flags have no meaningful value upon return.

; pointer to double in y
jsr c_dtoi

; result in d
© 2003 COSMIC Software MC68HC11 Machine Library 363

C Library - c_dtol

c_dtol

C

364
Description
Convert double into long integer

Syntax

Function
c_dtol converts the double pointered by the y register to a long in long
register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

; pointer to double in y
jsr c_dtol

; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_dtos

c_dtos

Description

Copy a double onto the stack

Syntax

Function
c_dtos copies the double pointered by the y register onto the stack.

Return Value
c_dtos returns nothing. The stack is updated.

; pointer to double in y
jsr c_dtos
© 2003 COSMIC Software MC68HC11 Machine Library 365

C Library - c_eewbfb

c_eewbfb

C

366
Description
Eeprom char bit field update

Syntax

Function
c_eewbfb updates a char bit field (8 bits sized) located in eeprom with a
new value. The new value is in b and is right justified. The byte address
in eeprom is in y, and the mask, giving the bit field size and location, is
a byte located in memory just after the call. The function waits for the
time necessary to program the new value.

See Also
c_eewbfd, c_eewstr

ldb #value
ldy #address
jsr c_eewbfb
dc.b <mask>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_eewbfd

c_eewbfd

Description

Eeprom short bit field update

Syntax

Function
c_eewbfd updates a short bit field (16 bits sized) located in eeprom
with a new value. The new value is in y and is right justified. The word
address in eeprom is in d, and the mask, giving the bit field size and
location, is in a word located after the call. The function waits for the
time necessary to program the new value.

See Also
c_eewbfb, c_eewstr

ldb #value
ldy #address
jsr c_eewbfd
dc.w <mask>
© 2003 COSMIC Software MC68HC11 Machine Library 367

C Library - c_eewrc

c_eewrc

C

368
Description
Write a char int in eeprom

Syntax

Function
c_eewrc writes a byte in eeprom. The new byte value is in b and its
address in eeprom is in. The function tests if the erasure is necessary,
and do it only in that case. Then if the new value is different from one in
eeprom, the new byte is programmed. The function waits for the time
necessary to program correctly the byte. The delay function included in
the same module assumes that the clock frequency is 2 Mhz. The func-
tion does not test if the byte address is in the address range correspond-
ing to the existing eeprom. These addresses may change in further
versions of the processor.

See Also
c_eewrd, c_eewrl, c_eewrw

ldb #value
ldy #address
jsr c_eewrc
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_eewrd

c_eewrd

Description

Write a double in eeprom

Syntax

Function
c_eewrd writes a double in eeprom. Pointers to source and destination
are on the stack, and are removed by the return sequence. The function
waits for the time necessary to program all the bytes.

See Also
c_eewrc, c_eewrl, c_eewrw

; pointer to destination on the stack
; pointer to source on the stack

jsr c_eewrd
© 2003 COSMIC Software MC68HC11 Machine Library 369

C Library - c_eewrl

c_eewrl

C

370
Description
Write a long int in eeprom

Syntax

Function
c_eewrl writes a long int in eeprom. The new value is in the long regis-
ter, and its address in eeprom is in. Each byte is programmed independ-
ently by the c_eewrc function.

See Also
c_eewrc, c_eewrd, c_eewrw

; value in long register
ldy #address
jsr c_eewrl
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_eewrw

c_eewrw

Description

Write a short int in eeprom

Syntax

Function
c_eewrw writes a short int in eeprom. The new value is in d, and its
address in eeprom is in. Each byte is programmed independently by the
c_eewrc function.

See Also
c_eewrc, c_eewrd, c_eewrl

ldd #value
ldy #address
jsr c_eewrw
© 2003 COSMIC Software MC68HC11 Machine Library 371

C Library - c_eewstr

c_eewstr

C

372
Description
Move a structure in eeprom

Syntax

Function
c_eewstr moves a structure into an eeprom memory location. Pointer to
source is in d, and pointer to destination is in y. The structure size is
given by a word located in program memory just after the call. Each
byte is programmed independently by the c_eewrc function.

See Also
c_eewbfb, c_eewbfd, c_eewrc

ldd #source_address
ldy #destination_address
jsr c_eewstr
dc.w <mask>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_entl

c_entl

Description

Function entry

Syntax

Function
c_entl adds a new stack frame to the stack. The size of the frame’s local
variables is given by the next word in memory as indicated above.

Return Value
Nothing. When the function returns, it returns to the location after
.word. The stack pointer is updated and the stack frame is set.

See Also
c_ents

jsr c_entl
dc.w <size>
© 2003 COSMIC Software MC68HC11 Machine Library 373

C Library - c_ents

c_ents

C

374
Description
Function entry

Syntax

Function
c_ents adds a new stack frame to the stack. The size of that frame’s
local variables is given by the next byte in memory.

Return Value
Nothing. When the function returns, it returns to the location after .byte
following the call to c_ents. The stack pointer is updated and the stack
frame is set.

See Also
c_entl

jsr c_ents
dc.b <size>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_fadd

c_fadd

Description

Add float to float

Syntax

Function
c_fadd adds the float in float register to the float pointered by the y reg-
ister. No check is made for overflow.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_fsub

; left in float register
; pointer to right in y register

jsr c_fadd
; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 375

C Library - c_fcmp

c_fcmp

C

376
Description
Compare floats

Syntax

Function
c_fcmp compares the float in float register with the float pointered by
the y register.

Return Value
The N and Z flags are set to reflect the value (left-right).

; left in float register
; pointer to right in y register

jsr c_fcmp
; result in flags
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_fdiv

c_fdiv

Description

Divide float by float

Syntax

Function
c_fdiv divides the float in float register by the float pointered by the y
register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; left in float register
; pointer to right in y register

jsr c_fdiv
; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 377

C Library - c_fgadd

c_fgadd

C

378
Description
Add float to float in memory

Syntax

Function
c_fgadd adds the float in the float pointered by the y register to the float
register.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

See Also
c_fgsub

; pointer to left in y register
; right in float register

jsr c_fgadd
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_fgdiv

c_fgdiv

Description

Divide float by float in memory

Syntax

Function
c_fgdiv divides the float in float pointered by the y register by the float
register.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

; pointer to left in y register
; right in float register

jsr c_fgdiv
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 379

C Library - c_fgmul

c_fgmul

C

380
Description
Multiply float by float in memory

Syntax

Function
c_fgmul or c_fgmula (with ALU) multiplies the float in float register by
the float pointered by the y register.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

; pointer to left in y register
; right in float register

jsr c_fgmul orjsrc_fgmula
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_fgsub

c_fgsub

Description

Subtract float from float in memory

Syntax

Function
c_fgsub subtracts the float pointered at by the y register from the float in
float register. No check is made for overflow.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

See Also
c_fgadd

; pointer to left in y register
; right in float register

jsr c_fgsub
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 381

C Library - c_fmul

c_fmul

C

382
Description
Multiply float by float

Syntax

Function
c_fmul or c_fmula (with ALU) multiplies the float in float register by
the float pointered by the y register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return

; left in float register
; pointer to right in y register

jsr c_fmul orjsrc_fmula
; result in float register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_fneg

c_fneg

Description

Negate a float

Syntax

Function
c_fneg negates the float in float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_dneg

; operand in float register
jsr c_fneg

; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 383

C Library - c_fsub

c_fsub

C

384
Description
Subtract float from float

Syntax

Function
c_fsub subtracts the float pointered by the y register from the float in
float register. No check is made for overflow.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_fadd

; left in float register
; pointer to right in y register

jsr c_fsub
; result in float register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ftod

c_ftod

Description

Convert float into double

Syntax

Function
c_ftod converts the float in float register to a double stored at the loca-
tion pointed by the y register.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

; operand in float register
; pointer to double in y register

jsr c_ftod
; result in memory
© 2003 COSMIC Software MC68HC11 Machine Library 385

C Library - c_ftoi

c_ftoi

C

386
Description
Convert float to integer

Syntax

Function
c_ftoi converts the float in float register to a two byte integer in d. No
check is made for overflow.

Return Value
The resulting value is in d. Flags have no meaningful value upon return.

; float in float register
jsr c_ftoi

; result in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ftol

c_ftol

Description

Convert float into long integer

Syntax

Function
c_ftol converts the float in float register to a four byte integer in long
register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags have no meaningful value
upon return.

; float in float register
jsr c_ftol

; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 387

C Library - c_idiv

c_idiv

C

388
Description
Quotient of integer division

Syntax

Function
c_idiv or c_idiva (with ALU) divides the two byte integer in the d regis-
ter by the two byte integer in the y register using the MC68HC11 ‘idiv’
instruction. Values are assumed to be signed. If division by zero is
attempted, results are as provided by the divide instruction.

Return Value
The quotient is placed in d and flags are set accordingly.

See Also
c_udiv, c_imod, c_umod

ldd dividend
ldy divisor
jsr c_idiv orjsrc_idiva

; quotient in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_idivb

c_idivb

Description

Integer division by a byte constant

Syntax

Function
c_idivb divides the two byte integer in the d register by a byte constant.
<constant> is a byte located in memory just after the call. No check is
made for overflow.

Return Value
The resulting value is in d and the flags are set accordingly.

See Also
c_idiv, c_imod, c_umod

ldd operand
jsr c_idivb
dc.b <constant>
© 2003 COSMIC Software MC68HC11 Machine Library 389

C Library - c_ilsh

c_ilsh

C

390
Description
Integer left shift

Syntax

Function
c_ilsh left shifts the two byte integer in the d register by the number of
bits specified by the y register. A zero count leaves the d register
unchanged. No check is made for invalid counts.

Return Value
The resulting value is in d. Flags have no meaningful value upon return.

See Also
c_irsh, c_ursh

ldd value
ldy count
jsr c_ilsh

; result in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_imod

c_imod

Description

Remainder of integer division

Syntax

Function
c_imod or c_imoda (with ALU) divides the two byte integer in the d
register by the two byte integer in the y register using the MC68HC11
‘idiv’ instruction. Values are assumed to be signed. If division by zero
is attempted, values are those provided by the divide instruction.

Return Value
The remainder is placed in d and flags are set accordingly.

See Also
c_umod, c_idiv, c_udiv

ldd dividend
ldy divisor
jsr c_imod or jsrc_imoda

; remainder in d
© 2003 COSMIC Software MC68HC11 Machine Library 391

C Library - c_imul

c_imul

C

392
Description
Integer multiplication

Syntax

Function
c_imul or c_imula (with ALU) multiplies the two byte integer in the d
register by the two byte integer in the y register. No check is made for
overflow.

Return Value
The resulting value is in d and the flags are set accordingly.

See Also
c_imulb, c_imul10

ldd operand
ldy operand
jsr c_imul or jsrc_imula

; result in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_imulb

c_imulb

Description

Integer multiplication by a byte constant

Syntax

Function
c_imulb multiplies the two byte integer in the d register by a byte con-
stant. <constant> is a byte located in memory just after the call. No
check is made for overflow.

Return Value
The resulting value is in d and the flags are set accordingly.

See Also
c_imul, c_imul10

ldd operand
jsr c_imulb
dc.b <constant>
© 2003 COSMIC Software MC68HC11 Machine Library 393

C Library - c_imul10

c_imul10

C

394
Description
Integer multiplication by 10

Syntax

Function
c_imul10 multiplies the two byte integer in the d register by 10. No
check is made for overflow. This function is designed to enhance the
conversion programs.

Return Value
The resulting value is in d and the flags are set accordingly.

See Also
c_imul, c_imulb

ldd operand
jsr c_imul10

; result in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_irsh

c_irsh

Description

Integer right shift

Syntax

Function
c_irsh right shifts the two byte integer in the d register by the number of
bits specified by the y register. A zero count leaves the d register
unchanged. No check is made for invalid counts. The value is assumed
to be signed, so a negative value will be kept negative as for arithmetic
shift

Return Value
The resulting value is in d. Flags have no meaningful value upon return.

See Also
c_ilsh, c_ursh

ldd value
ldy count
jsr c_irsh

; result in d
© 2003 COSMIC Software MC68HC11 Machine Library 395

C Library - c_itod

c_itod

C

396
Description
Convert integer into double

Syntax

Function
c_itod converts the two byte integer in the d register to a double stored
in the location pointered by the y register.

Return Value
The resulting value is stored at the location pointered by y. Flags have
no meaningful value upon return.

ldd value
; pointer to double in y

jsr c_itod
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_itof

c_itof

Description

Convert integer into float

Syntax

Function
c_itof converts the two byte integer in the d register to a float stored in
float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

ldd value
jsr c_itof

; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 397

C Library - c_jctab

c_jctab

C

398
Description
Perform C switch statement on char

Syntax

Function
c_jctab is called to switch to the proper code segment, depending on a
value and an address table and a value located in the b register. The
value is used as an index in the address table, which is located in the
code just after the jsrinstruction. The index is not checked against the
table length.

Return Value
c_jctab jumps to the proper code. It never returns.

See Also
c_jtab, c_jltab

ldab value
jsr c_jctab
dc.b address0, address1,...
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_jltab

c_jltab

Description

Perform C switch statement on long

Syntax

Function
c_jltab is called to switch to the proper code segment, depending on a
value and an address table. The top of the table is found in the word fol-
lowing the call instruction, and consists of a list of ranges followed by a
list of pairs. A range consists of a header, composed of a count followed
by a starting value, followed by an address list. A header with a zero
count introduces the final list of pairs. The count is followed in this case
by the number of following pairs. A pair consists of an address fol-
lowed by a value. The pair list is ended by the default address. All val-
ues are four byte integers. All addresses are two byte integers.

Return Value
c_jltab jumps to the proper code. It never returns.

See Also
c_jctab, c_jtab

; <value> in long register
jsr c_jltab
dc.w swtab
© 2003 COSMIC Software MC68HC11 Machine Library 399

C Library - c_jtab

c_jtab

C

400
Description
Perform C switch statement

Syntax

Function
c_jtab is called to switch to the proper code segment, depending on a
value and an address table. The top of the table is found in the word fol-
lowing the call instruction, and consists of a list of ranges followed by a
list of pairs. A range consists of a header, composed of a count followed
by a starting value, followed by an address list. A header with a zero
count introduces the final list of pairs. The count is followed in this case
by the number of following pairs. A pair consists of an address fol-
lowed by a value. The pair list is ended by the default address. All val-
ues and addresses are two byte integers.

Return Value
c_jtab jumps to the proper code. It never returns.

See Also
c_jctab, c_jltab

ldd value
jsr c_jtab
dc.w swtab
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_kenll

c_kenll

Description

Function entry with argument in d and 2,x

Syntax

Function
c_kenll behaves just like c_entl, but the first argument of the called
function is in d and 2,x. The two words are saved on the stack before
opening the local variables area.

Return Value
Nothing. The stack pointer is updated and the stack frame is set.

See Also
c_entl, c_kentl

jsr c_kenll
dc.w <size>
© 2003 COSMIC Software MC68HC11 Machine Library 401

C Library - c_kenls

c_kenls

C

402
Description
Function entry with argument in d and 2,x

Syntax

Function
c_kenls behaves just like c_ents, but the first argument of the called
function is in d and 2,x. The two words are saved on the stack before
opening the local variables area.

Return Value
Nothing. The stack pointer is updated and the stack frame is set.

See Also
c_ents

jsr c_kenls
dc.b <size>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_kenlt

c_kenlt

Description

Function entry with argument in b

Syntax

Function
c_kenlt behaves just like c_kentl, but the first argument of the called
function is in b. b is saved on the stack before opening the local varia-
bles area.

Return Value
Nothing. The stack is updated.

See Also
c_kentl

jsr c_kenlt
dc.w <size>
© 2003 COSMIC Software MC68HC11 Machine Library 403

C Library - c_kenst

c_kenst

C

404
Description
Function entry with argument in b

Syntax

Function
c_kenst behaves just like c_kents, but the first argument of the called
function is in b. b is saved on the stack before opening the local varia-
bles area.

Return Value
Nothing. The stack is updated.

See Also
c_kents

jsr c_kenst
dc.w <size>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_kentl

c_kentl

Description

Function entry with argument in d

Syntax

Function
c_kentl behaves just like c_entl, but the first argument of the called
function is in d. d is saved on the stack before opening the local varia-
bles area.

Return Value
Nothing. The stack pointer is updated and the stack frame is set.

See Also
c_entl, c_kenlt

jsr c_kentl
dc.w <size>
© 2003 COSMIC Software MC68HC11 Machine Library 405

C Library - c_kents

c_kents

C

406
Description
Function entry with argument in d

Syntax

Function
c_kents behaves just like c_ents, but the first argument of the called
function is in d. (d) is saved on the stack before opening the local varia-
bles area.

Return Value
Nothing. The stack pointer is updated and the stack frame is set.

See Also
c_ents

jsr c_kents
dc.b <size>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ladd

c_ladd

Description

Long integer addition

Syntax

Function
c_ladd adds the four bytes in long register and the four byte integer
pointered by the y register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_lcmp, c_lsub

; left in long register
; pointer to right in y register

jsr c_ladd
; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 407

C Library - c_land

c_land

C

408
Description
Bitwise AND for long integers

Syntax

Function
c_land operates a bitwise AND between the operands. Each operand is
taken to be a four bytes.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_lor, c_lxor

; left in long register
; pointer to right in y register

jsr c_land
; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lcmp

c_lcmp

Description

Long integer compare

Syntax

Function
c_lcmp compares the four bytes, left to the four bytes pointered by the y
register.

Return Value
Flags are set accordingly.

See Also
c_ladd, c_lsub

; left in long register
; pointer to right in y register

jsr c_lcmp
; result in flags
© 2003 COSMIC Software MC68HC11 Machine Library 409

C Library - c_ldiv

c_ldiv

C

410
Description
Quotient of long integer division

Syntax

Function
c_ldiv or c_ldiva (with ALU) divides the four bytes in long register by
the four bytes pointered by the y register. Values are assumed to be
signed. If division by zero is attempted, results are as provided by the
divide instruction.

Return Value
 The quotient is in long register. Flags are not meaningful upon return.

See Also
c_ludv, c_lmod, c_umd

; left in long register
; pointer to right in y register

jsr c_ldiv or jsrc_ldiva
; quotient in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgadd

c_lgadd

Description

Long addition

Syntax

Function
c_lgadd performs the long addition of the value pointered by the y reg-
ister and the value in long register.

Return Value
The result is stored at the location pointered by y. Flags are not mean-
ingful upon return.

; pointer to left in y register
; right in long register

jsr c_lgadd
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 411

C Library - c_lgand

c_lgand

C

412
Description
Long bitwise AND

Syntax

Function
c_lgand performs the long bitwise AND of the value in long register
the value pointered by the y register.

Return Value
The result is stored at the location pointered by y. Flags are not mean-
ingful upon return.

; pointer to left in y register
; right in long register

jsr c_lgand
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgdiv

c_lgdiv

Description

Quotient of long integer division in memory

Syntax

Function
c_lgdiv or c_lgdiva (with ALU) divides the four bytes pointered by the
y register by the four byte integer in long register. Values are assumed
to be signed. If division by zero is attempted, results are as provided by
the divide instruction.

Return Value
The quotient is stored in a location pointered by y. Flags are not mean-
ingful upon return.

See Also
c_ludv, c_lmod, c_umd, c_lgudv

; pointer to left in y register
; right in long register

jsr c_lgdiv orjsrc_lgdiva
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 413

C Library - c_lglsh

c_lglsh

C

414
Description
Long shift left

Syntax

Function
c_lglsh performs the long left shift of the value pointered by the y regis-
ter by the bit count in the d register. No check is done against silly
counts.

Return Value
The result is stored in the location pointered by y. Flags are not mean-
ingful upon return.

; pointer to long in y register
; shift count in y register

jsr c_lglsh
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgmod

c_lgmod

Description

Remainder of long integer division in memory

Syntax

Function
c_lgmod or c_lgmoda (with ALU) divides the four byte integer poin-
tered by the y register by the four byte integer in long register. Values
are assumed to be signed. The dividend is returned in the case of divi-
sion by zero.

Return Value
The remainder is stored in a location pointered by y.

See Also
c_lumd, c_ldiv, c_lmod, c_udiv, c_lgudv

; pointer to left in y register
; right in long register

jsr c_lgmod orjsrc_lgmoda
; result in memory
© 2003 COSMIC Software MC68HC11 Machine Library 415

C Library - c_lgmul

c_lgmul

C

416
Description
Long multiplication in memory

Syntax

Function
c_lgmul or c_lgmula (with ALU) performs the long multiplication of
the value pointered by the y register by the value in long register.

Return Value
The result is stored in the location pointered by y. Flags are not mean-
ingful upon return.

See Also
c_lmul

; pointer to left in y register
; right in long register

jsr c_lgmul orjsrc_lgmula
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgor

c_lgor

Description

Long bitwise OR

Syntax

Function
c_lgor performs the long bitwise OR of the value pointered by the y
register and the value in long register.

Return Value
The result is stored in a location pointered by y. Flags are not meaning-
ful upon return.

; pointer to left in y register
; right in long register

jsr c_lgor
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 417

C Library - c_lgrsh

c_lgrsh

C

418
Description
Signed long shift right

Syntax

Function
c_lgrsh performs the signed long right shift of the value pointered by
the y register and the value in long register. No check is done against
silly counts. Because the value is signed, arithmetic shift instructions
are used.

Return Value
The result is stored in the location pointered by y. Flags are not mean-
ingful upon return.

; pointer to long in y register
; shift count in d register

jsr c_lgrsh
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgsub

c_lgsub

Description

Long subtraction

Syntax

Function
c_lgsub evaluates the (long) difference between the value pointered by
the y register and the value in long register

Return Value
The result is stored in the location pointered by y Flags are not mean-
ingful upon return.

; pointer to left in y register
; right in long register

jsr c_lgsub
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 419

C Library - c_lgudv

c_lgudv

C

420
Description
Quotient of unsigned long division in memory

Syntax

Function
c_lgudv or c_lgudva (with (ALU) divides the four byte unsigned integer
pointered by the y register by the four byte unsigned integer in long reg-
ister. Values are assumed to be unsigned. If division by zero is
attempted, results are as provided by the divide instruction.

Return Value
The quotient is stored in a location pointered by y. Flags are not mean-
ingful upon return.

See Also
c_ludv, c_lmod, c_umd

; pointer to left in y register
; right in long register

jsr c_lgudv orjsrc_lgudva
; result in left
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgumd

c_lgumd

Description

Remainder of long unsigned integer division

Syntax

Function
c_lgumd or c_lgmuda (with ALU) divides the four byte unsigned inte-
ger pointered by the y register by the four byte unsigned integer in long
register. Values are assumed to be unsigned. The dividend is returned in
the case of division by zero.

Return Value
The remainder is stored in a location pointered by y. Flags are not
meaningful upon return.

See Also
c_lmod, c_ldiv, c_ludv

; pointer to left in y register
; right in long register

jsr c_lgumd orjsrc_lgumda
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 421

C Library - c_lgursh

c_lgursh

C

422
Description
Unsigned long shift right

Syntax

Function
c_lgursh performs the unsigned long right shift of the value pointered
by the y register by the bit count specified in the d register. No check is
done against silly counts. Because the value is unsigned, logical shift
instructions are used.

Return Value
The result is stored in the location pointered by y. Flags are not mean-
ingful upon return

; pointer to long in y register
; shift count in d register

jsr c_lgursh
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lgxor

c_lgxor

Description

Long bitwise exclusive OR

Syntax

Function
c_lgxor performs the long bitwise Exclusive OR of the value pointered
by the y register and the value in long register.

Return Value
The result is stored in the location pointered by y. Flags are not mean-
ingful upon return

; pointer to left in y register
; right in long register

jsr c_lgxor
; result in left
© 2003 COSMIC Software MC68HC11 Machine Library 423

C Library - c_llsh

c_llsh

C

424
Description
Long integer shift left

Syntax

Function
c_llsh shifts left four bytes in long register by the number of bits speci-
fied by the y register. A zero count leaves the d register unchanged. No
check is made for invalid counts.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_lrsh, c_lursh

; operand in long register
; shift count in y register

jsr c_llsh
; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lmod

c_lmod

Description

Remainder of long integer division

Syntax

Function
c_lmod or c_lmoda (with ALU) divides the four bytes in long register
by the four bytes pointered by the y register. Values are assumed to be
signed. The dividend is returned in the case of division by zero.

Return Value
The remainder is in long register. Flags are not meaningful upon return

See Also
c_lumd, c_ldiv, c_udiv

; left in long register
; pointer to right in y register

jsr c_lmod or jsrc_lmoda
; remainder in long register
© 2003 COSMIC Software MC68HC11 Machine Library 425

C Library - c_lmul

c_lmul

C

426
Description
Multiply long integer by long integer

Syntax

Function
c_lmul or c_lmula (with ALU) multiplies the four bytes in long register
by the four bytes pointered by the y register. No check is made for over-
flow.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return

See Also
c_lgmul

; left in long register
; pointer right in y register

jsr c_lmul or jsrc_lmula
; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lneg

c_lneg

Description

Negate a long integer

Syntax

Function
c_lneg negates the four bytes in long register.

Return Value
The result is in long register. The flags are not meaningful upon return.

See Also
c_lcom

; operand in long register
jsr c_lneg

; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 427

C Library - c_lor

c_lor

C

428
Description
Bitwise OR with long integers

Syntax

Function
c_lor operates a bitwise OR between the contents of long register and
the long pointered by the y register. Each operand is taken to be a four
byte integer.

Return Value
The result is in long register. The flags are not meaningful upon return.

See Also
c_land, c_lxor

; left in long register
; pointer to right in y register

jsr c_lor
; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lrsh

c_lrsh

Description

Long integer right shift

Syntax

Function
c_lrsh right shifts the four bytes in long register by the number of bits
specified by the y register. A zero count leaves the d register
unchanged. No check is made for invalid counts. The value is assumed
to be signed, so a negative value will stay negative as by an arithmetic
shift.

Return Value
The resulting value is stored in long register. Flags are not meaningful
upon return.

See Also
c_llsh, c_lursh

; long in long register
; shift count in y register

jsr c_lrsh
; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 429

C Library - c_lrzmp

c_lrzmp

C

430
Description
Long test against zero

Syntax

Function
c_lrzmp tests the value in the long register and updates the sign and
zero flags.

Return Value
Nothing, but the (possibly changed) flags.

; value in long register
jsr c_lrzmp

; result in the flags
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lsub

c_lsub

Description

Long integer subtraction

Syntax

Function
c_lsub subtracts the four bytes pointered by the y register from the four
bytes in long register.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_ladd, c_lcmp

; long in long register
; pointer to right in y register

jsr c_lsub
; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 431

C Library - c_ltod

c_ltod

C

432
Description
Convert long integer into double

Syntax

Function
c_ltod converts the four bytes in long register to a double pointered by
the y register.

Return Value
The resulting value is stored in a double pointered by y. Flags have no
meaningful value upon return.

; pointer to double in y register
; operand in long register

jsr c_ltod
; result in memory
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ltof

c_ltof

Description

Convert long integer into float

Syntax

Function
c_ltof converts the four bytes in long register to a float in float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; operand in long register
jsr c_ltof

; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 433

C Library - c_ludv

c_ludv

C

434
Description
Quotient of unsigned long integer division

Syntax

Function
c_ludv or c_ludva (with ALU) divides the four bytes in long register by
the four bytes pointered by the y register. Values are assumed to be
unsigned. The dividend is returned in the case of division by zero.

Return Value
The quotient is in long register. Flags are not meaningful upon return.

See Also
c_ldiv, c_lmod, c_lumd

; left in long register
; pointer to right in y register

jsr c_ludv or jsrc_ludva
; quotient in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lumd

c_lumd

Description

Remainder of unsigned long integer division

Syntax

Function
c_lumd or c_lumda (with ALU) divides the four bytes in long register
by the four bytes pointered by the y register. Values are assumed to be
unsigned. The dividend is returned in the case of division by zero.

Return Value
The remainder is in long register. Flags are not meaningful upon return.

See Also
c_lmod, c_ldiv, c_ludv

; left in long register
; pointer to right in y register

jsr c_lumd or jsrc_lumda
; quotient in long register
© 2003 COSMIC Software MC68HC11 Machine Library 435

C Library - c_lursh

c_lursh

C

436
Description
Unsigned long integer shift right

Syntax

Function
c_lursh right shifts the four bytes in long register by the number of bits
specified by the y register. A zero count leaves the d register
unchanged. No check is made for invalid counts. The value is assumed
to be unsigned. The shift instruction used is therefore a logical shift.

Return Value
The resulting value stays in long register. Flags are not meaningful
upon return.

See Also
c_llsh, c_lrsh

; long in long register
; shift count in y register

jsr c_lursh
; result in long register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_lxor

c_lxor

Description

Bitwise exclusive OR with long integers

Syntax

Function
c_lxor operates a bitwise Exclusive OR between the contents of long
register and the long pointered by the y register. Each operand is taken
to be a four byte integer.

Return Value
The result is in long register. Flags are not meaningful upon return.

See Also
c_land, c_lor

; left in long register
; pointer to right in y register

jsr c_lxor
; result in long register
© 2003 COSMIC Software MC68HC11 Machine Library 437

C Library - c_lzmp

c_lzmp

C

438
Description
Compare a long integer to zero

Syntax

Function
c_lzmp compares the four bytes pointered by the y register to zero.

Return Value
Nothing, but the flags.

; pointer operand in y register
jsr c_lzmp

; result in the flags
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_movstb

c_movstb

Description

Copy a structure to another

Syntax

Function
c_movstb copies the structure at right into the structure at left. The
length in bytes is stored in a byte located just after the call.

Return Value
Nothing.

See Also
c_movstw

; pointer to left in y register
; pointer to right in d register

jsr c_movstb
dc.b <length>
© 2003 COSMIC Software MC68HC11 Machine Library 439

C Library - c_movstw

c_movstw

C

440
Description
Copy a structure to another

Syntax

Function
c_movstw copies the structure at right into the structure at left. The
length in bytes is stored in a word located just after the call.

Return Value
Nothing.

See Also
c_movstb

; pointer to left in y register
; pointer to right in d register

jsr c_movstw
dc.w <length>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_mspl

c_mspl

Description

Move stack pointer forward

Syntax

Function
c_mspl moves the stack pointer forward by an amount given by the next
word.

Return Value
Nothing.

See Also
c_msps

jsr c_mspl
dc.w <size>
© 2003 COSMIC Software MC68HC11 Machine Library 441

C Library - c_mspo

c_mspo

C

442
Description
Move stack pointer backward

Syntax

Function
c_mspo moves the stack pointer backward by an amount given by the
next word.

Return Value
Nothing. The stack pointer is updated.

See Also
c_mspl

jsr c_mspo
dc.w <size>
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_msps

c_msps

Description

Move stack pointer forward

Syntax

Function
c_msps moves the stack pointer forward by an amount given by the next
byte.

Return Value
Nothing.

See Also
c_mspl

jsr c_msps
dc.b <size>
© 2003 COSMIC Software MC68HC11 Machine Library 443

C Library - c_udiv

c_udiv

C

444
Description
Quotient of unsigned integer division

Syntax

Function
c_udiv divides the two byte unsigned integer in the d register by the two
byte unsigned integer in the y register, using the MC68HC11’idiv
instruction. Values are assumed to be unsigned. If division by zero is
attempted, results are as provided by the divide instruction.

Return Value
The quotient is stored in d. Flags are not meaningful upon return.

See Also
c_idiv, c_imod, c_umod

ldd dividend
ldy divisor
jsr c_udiv

; quotient in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_uitod

c_uitod

Description

Convert unsigned integer into double

Syntax

Function
c_uitod converts the two byte unsigned integer in d to a double poin-
tered by the y register.

Return Value
The resulting value is store at location pointered by y. Flags have no
meaningful value upon return.

ldd value
; pointer to double in y register

jsr c_uitod
; result in memory
© 2003 COSMIC Software MC68HC11 Machine Library 445

C Library - c_uitof

c_uitof

C

446
Description
Convert unsigned integer into float

Syntax

Function
c_uitof converts the two byte unsigned integer in the d register to a float
stored in float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

ldd value
jsr c_uitof

; result in float register
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ulcmp

c_ulcmp

Description

Unsigned long integer compare

Syntax

Function
c_ulcmp compares the four byte unsigned integer in long register to the
four bytes pointered by the y register.

Return Value
Flags are set accordingly.

See Also
c_ladd, c_lsub, c_lcmp

; left in long register
; pointer to right in y register

jsr c_ulcmp
; result in flags
© 2003 COSMIC Software MC68HC11 Machine Library 447

C Library - c_ultod

c_ultod

C

448
Description
Convert unsigned long integer into double

Syntax

Function
c_ultod converts the four byte unsigned integer in long register to a
double pointered by the y register.

Return Value
The resulting value is in double pointered by y. Flags have no meaning-
ful value upon return.

; pointer to double in y register
; operand in long register

jsr c_ultod
; result address in y
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ultof

c_ultof

Description

Convert unsigned long integer into float

Syntax

Function
c_ultof converts the four byte unsigned integer in long register to a float
in float register.

Return Value
The resulting value is in float register. Flags have no meaningful value
upon return.

; long in long register
jsr c_ultof

; result in float register
© 2003 COSMIC Software MC68HC11 Machine Library 449

C Library - c_umod

c_umod

C

450
Description
Remainder of unsigned integer division

Syntax

Function
c_umod divides the two byte unsigned integer in the d register by the
two byte unsigned integer in the y register, using the MC68HC11 idiv
instruction. Values are assumed to be unsigned. If division by zero is
attempted, results are as provided by the divide instruction.

Return Value
The remainder is placed in d. Flags are not meaningful upon return.

See Also
c_idiv, c_imod, c_udiv

ldd dividend
ldy divisor
jsr c_umod

; remainder in d
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_ursh

c_ursh

Description

Unsigned integer shift right

Syntax

Function
c_ursh right shifts the two bytes in the d register by the number of bits
specified by the y register. A zero count leaves the d register
unchanged. No check is made for invalid counts. The value is assumed
to be unsigned. The shift instruction used is therefore a logical shift.

Return Value
The resulting value is stored in d. Flags are not meaningful upon return.

See Also
c_ilsh, c_irsh

ldd value
ldy count
jsr c_ursh

; result in d
© 2003 COSMIC Software MC68HC11 Machine Library 451

C Library - c_wcalc

c_wcalc

C

452
Description
Banked function call for the MC68HC11C0

Syntax

Function
c_wcalc calls a banked function assuming that the y register points at a
two words descriptor. The first word contains the bank number, the sec-
ond contains the target address.

Return Value
The value returned by the called function.

See Also
c_wsavc

ldy #desc
jsr c_wcalc
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_wcalk

c_wcalk

Description

Banked function call for the MC68HC11K4

Syntax

Function
c_wcalk calls a banked function assuming that the y register points at a
two words descriptor. The first word contains the bank number, the sec-
ond contains the target address.

Return Value
The value returned by the called function.

See Also
c_wsavk

ldy #desc
jsr c_wcalk
© 2003 COSMIC Software MC68HC11 Machine Library 453

C Library - c_wsavc

c_wsavc

C

454
Description
Save bank descriptor for the MC68HC11C0

Syntax

Function
c_wsavc is used to save the current descriptor pointer and to create a
new descriptor onto the stack. The descriptor pointer is left pointing at
the created area. This function is called just before to stack arguments,
so the area is released with the argument cleaning of the calling func-
tion.

Return Value
Nothing.

See Also
c_wcalc

jsr c_wsavc
© 2003 COSMIC SoftwareMC68HC11 Machine Library

C Library - c_wsavk

c_wsavk

Description

Save bank descriptor for the MC68HC11K4

Syntax

Function
c_wsavk is used to save the current descriptor pointer and to create a
new descriptor onto the stack. The descriptor pointer is left pointing at
the created area. This function is called just before to stack arguments,
so the area is released with the argument cleaning of the calling func-
tion.

Return Value
Nothing.

See Also
c_wcalk

jsr c_wsavk
© 2003 COSMIC Software MC68HC11 Machine Library 455

APPENDIX

D

Compiler Passes
The information contained in this appendix is of interest to those users
who want to modify the default operation of the cross compiler by
changing the configuration file that the cx6811 compiler uses to control
the compilation process.

This appendix describes each of the passes of the compiler:

cp6811 the parser

cg6811 the code generator

co6811 the assembly language optimizer
© 2003 COSMIC Software Compiler Passes 457

The cp6811 ParserD

458
The cp6811 Parser
cp6811 is the parser used by the C compiler to expand #defines,
#includes, and other directives signalled by a #, parse the resulting text,
and outputs a sequential file of flow graphs and parse trees suitable for
input to the code generator cg6811.

Command Line Options
cp6811 accepts the following options, each of which is described in
detail below:

-ad enable #define expansion inside inline assembly code
between #asm and #endasm directives. By default, #define
symbols are expanded only in the C code.

cp6811 [options] file
-ad expand defines in assembly
-ck extra type checkings
-d*> define symbol=value
-e run preprocessor only
+e* error file name
-f single precision floats
-h*> include header
-i*> include path
-l output line information
-m# model configuration
-nb no bitfield packing
-nc no const replacement
-ne no enum optimization
-np allow pointer narrowing
-nw do not widen arguments
-o* output file name
-p need prototypes
-rb reverse bitfield order
-s do not reorder locals
-sa strict ANSI conformance
-u plain char is unsigned
-xd debug info for data
-xp no path in debug info
-xx extended debug info
-x output debug info
© 2003 COSMIC SoftwareCompiler Passes

The cp6811 Parser
-ck direct the compiler to enforce stronger type checking.

-d*^ specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e run preprocessor only. cp6811 only outputs lines of text.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f treat all floating point numbers as float and not double,
even if they are declared as double. All calculations will be
made on 32 bits instead of 64 bits. Space reservations will
be made on a 32 bit basis, as well as argument passing.

-h*> include files before to start the compiler process. You can
specify up to 60 files.

-i*> specify include path. You can specify up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-l output line number information for listing or debug.

-m# the value # is used to configure the parser behaviour. It is a
two bytes value, the upper byte specifies the default space
for variables, and the lower byte specifies the default space
for functions. A space byte is the or’ed value between a
size specifier and several optional other specifiers. The
allowed size specifiers are:

Allowed optionals specifiers are:

0x10 @tiny

0x20 @near

0x30 @far
© 2003 COSMIC Software Compiler Passes 459

The cp6811 ParserD

460
Note that all the combinations are not significant for all the
target processors.

-nb do not pack bitfield.

-nc do not replace an access to an initialized const object by its
value.

-ne do not optimize size of enum variables. By default, the
compiler selects the smallest integer type by checking the
range of the declared enum members. This mechanism
does not allow uncomplete enum declaration. When the
-ne option is selected, all enum variables are allocated as
int variables, thus allowing uncomplete declarations, as the
knowledge of all the members is no more necessary to
choose the proper integer type.

-np allow pointer narrowing. By default, the compiler refuses
to cast the pointer into any smaller object. This option
should be used carefully as such conversions are truncating
addresses.

-nw do not widen arguments. The standard behaviour of the
compiler is to widen integer arguments smaller than int to
int size and to widen float arguments to double. If this flag
is set, these promotions are not done. The code thus
obtained should be more compact if char and floats are
heavily used.

-o* write the output to the file *. Default is STDOUT for out-
put if -e is specified. Otherwise, an output file name is
required.

-p enforce prototype declaration for functions. An error mes-
sage is issued if a function is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

0x02 @pack

0x04 @nostack
© 2003 COSMIC SoftwareCompiler Passes

The cp6811 Parser
-rb reverse the bitfield fill order. By default, bitfields are filled
from less significant bit (LSB) to most significant bit
(MSB). If this option is specified, filling works from most
significant bit to less significant bit.

-s do not reorder local variables. By default, the compiler
sorts the local variables of a function in order to allocate
the most used variables as close as possible to the frame
pointer. This allows to use the shortest addressing modes
for the most used variables.

-sa enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This option also disables the enum
size optimization (-ne).

-u take a plain char to be of type unsigned char, not signed
char. This also affects in the same way strings constants.

-x generate debugging information for use by the cross
debugger or some other debugger or in-circuit emulator.
The default is to generate no debugging information.

-xd add debug information in the object file only for data
objects, hiding any function.

-xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-xx add debug information in the object file for any label
defining code or data.

Return Status
cp6811 returns success if it produces no error diagnostics.

Example
cp6811 is usually invoked before cg6811 the code generator, as in:

cp6811 -o \2.cx1 -u -i \cx32\h6811 file.c
cg6811 -o \2.cx2 \2.cx1
© 2003 COSMIC Software Compiler Passes 461

The cg6811 Code GeneratorD

462
The cg6811 Code Generator
cg6811 is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from cp6811 and outputs a
sequential file of assembly language statements.

As much as possible, the compiler generates freestanding code, but, for
those operations which cannot be done compactly, it generates inline
calls to a set of machine-dependent runtime library routines.

Command Line Options
cg6811 accepts the following options, each of which is described in
detail below:

-a optimize _asm code. By default, the assembly code
inserted by a _asm call is left unchanged by the optimizer.

-alu produce code to run on processors with an extra arithmetic
unit, such as M and N families.

-bss inhibit generating code into the bss section.

-ck enable stack overflow checking.

cg6811 [options] file

-a optimize _asm code
-alu use arithmetic unit
-bss do not use bss
-ck check stack frame
-ct constants in code
-dl# output line information
+e* error file name
-f full source display
-l output listing
-no do not use optimizer
-o* output file name
-st# static models
-t? processor type
-v verbose
© 2003 COSMIC SoftwareCompiler Passes

The cg6811 Code Generator
-ct output constant in the .text section. By default, the com-
piler outputs literals and constants in the .const section.

-dl# produce line number information. # must be either ‘1’ or
‘2’. Line number information can be produced in two
ways: 1) function name and line number is obtained by
specifying -dl1; 2) file name and line number is obtained
by specifying -dl2. All information is coded in symbols
that are in the debug symbol table.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f merge all C source lines of functions producing code into
the C and Assembly listing. By default, only C lines actu-
ally producing assembly code are shown in the listing.

-l merge C source listing with assembly language code; list-
ing output defaults to <file>.ls.

-no do not produce special directives for the post-optimizer.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-st# where # specifies one of the static models as explained in
Chapter 3, “Stack Usage”.

-t? where ? is the character k to select the K family, or the
character c to select the C family. This option is used to
configure the bank switching mechanism according to the
processor specifics.

-v When this option is set, each function name is send to
STDERR when cg6811 starts processing it.

Return Status
cg6811 returns success if it produces no diagnostics.
© 2003 COSMIC Software Compiler Passes 463

The cg6811 Code GeneratorD

464
Example
cg6811 usually follows cp6811 as follows:

cp6811 -o \2.cx1 -u -i\cx\h6811 file.c
cg6811 -o \2.cx2 \2.cx1
© 2003 COSMIC SoftwareCompiler Passes

The co6811 Assembly Language Optimizer
The co6811 Assembly Language Optimizer
co6811 is the code optimizing pass of the C compiler. It reads source
files of MC68HC11 assembly language source code, as generated by
the cg6811 code generator, and writes assembly language statements.
co6811 is a peephole optimizer; it works by checking lines function by
function for specific patterns. If the patterns are present, co6811
replaces the lines where the patterns occur with an optimized line or set
of lines. It repeatedly checks replaced patterns for further optimizations
until no more are possible. It deals with redundant load/store opera-
tions, constants, stack handling, and other operations.

Command Line Options
co6811 accepts the following options, each of which is described in
detail below:

-c leave removed instructions as comments in the output file.

-d* specify a list of codes allowing specific optimizations
functions to be selectively disabled.

-o* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-v write a log of modifications to STDERR. This displays the
number of removed instructions followed by the number of
modified instructions.

If <file> is present, it is used as the input file instead of the default
STDIN.

co6811 [options] <file>
-c keep original lines as comments
-d* disable specific optimizations
-o* output file name
-v print efficiency statistics
© 2003 COSMIC Software Compiler Passes 465

The co6811 Assembly Language OptimizerD

466
Disabling Optimization
When using the optimizer with the -c option, lines which are changed or
removed are kept in the assembly source as comment, followed by a
code composed with a letter and a digit, identifying the internal func-
tion which performs the optimization. If an optimization appears to do
something wrong, it is possible to disable selectively that function by
specifying its code with the -d option. Several functions can be disabled
by specifying a list of codes without any whitespaces. The code letter
can be enter both lower or uppercase.

Return Status
co6811 returns success if it produces no diagnostics.

Example
co6811 is usually invoked after cg6811 as follows:

cp6811 -o \2.cx1 -u -i\cx\h6811 file.c
cg6811 -o \2.cx2 \2.cx1
co6811 -o file.s \2.cx2
© 2003 COSMIC SoftwareCompiler Passes

Index
Symbols
#asm

directive 458
#asm directive 47
#endasm

directive 458
#endasm directive 47
#pragma

directive 37
#pragma asm directive 46
#pragma endasm directive 46
+grp directive 277
+seg option 274
.bsct

+zpage option 38
initialized data 37
section 20, 201
section,generated 24

.bsct section
label 193

.bss
section 20, 201
section,generated 24

.const
output section 463
section 20
segment 284

.data
section 20, 201
section,generated 24

.eeprom
section 41

.L suffix 57

.text
section 20, 201

.ubsct
section 201

@dir
space modifier 54
type qualifier 24

@eeprom
type qualifier 13, 41
variable allocation 41

@far
type qualifier 12

@far function 55
@interrupt

function 50
qualifier 50

@nostack
modifier 42

@port modifier 45
__ckdesc__l 288
__idesc__ 287, 288
__memory symbol 21, 58
__stack symbol 21
__wbase symbol 79
_asm

argument string size 48
assembly sequence 48
code optimization 462
in expression 49
lowercase mnemonics 49
return type 49
Index 1

uppercase mnemonics 49
_asm()

function 78
inserting assembler function 74

_BASE symbol 46
_checksum function 89
_sbreak function 58
_wsetup() function 79

Numerics
32 bits, float 459
68HC11C0

processor 69
8-bit precision,operation 11

A
abort function 80
abs function 81
absolute

address 45, 302
address in listing 315
hex file generator 9
listing file 315
listing utility 10
map section 188
path name 461
referencing address 43
section relocation 282
symbol 276
symbol in library 318
symbol table 273
symbol tables 295
symbol,flagged 295

absolute section 246, 255
acos function 82
address

banked 324
banked data 323
default format 313, 315
linear physical 324
logical end 276
logical start segment 282

logical start set 276
paged format 313, 315
physical 276, 324
physical end 274
physical start 274
physical start segment 282
set logical 276

align directive 205
allocate memory block 210
allocate storage for constants 209
application

embedded 268
non-banked 313
system bootstrap 268

argument
widen 460

asembler
include directive 202

asin function 83
assembler

branch shortening 203
C style directives 204
code inline 47
conditional branch range 203
conditional directive 200
create listing file 189
endm directive 197
expression 196
filling byte 189, 205
listing process 315
listing stream 191
macro

instruction 197
macro directive 197
macro parameter 198
object file 190
operator set 196
predefined sections 201
section name 201
sections 201
special parameter \# 198
special parameter * 200
2 Index

special parameter \0 199
switch directive 201

assembleur
debug information

add line 190
label 190

assembly language
code optimizer 465

atan function 84
atan2 function 85
atof function 86
atoi function 87
atol function 88
automatic

bank filling 310

B
bank

automatic segment creation 276
disable 273
link application 52
logical start address 52
number 52
optimize filling 9, 310
physical start address 52
size setting 274, 310
switched system 282
window base register 52
window maximum size 52
window mechanism 12

bank switching
@far function 52
@far type modifier 51
_wbase symbol 53
_wsetup() function 53
c_desc pointer 52
call_descriptor 52
definition 51
external 52
far pointer 52
mechanism configuration 463
support 12

base directive 206
bias

segment parameter 282
setting 283

bitfield
compiler reverse option 70
filling 461
filling order 70
reverse order 461

boundary
round up 276

bsct directive 207
bss section 32
buffer

convert to double 86, 171
convert to integer 87
convert to long 88, 172
convert to unsigned long 173
copy from one to another 130, 131

C
C identifier 107
C interface

to assembly language 54
underscore character prefix 54

C library
floating point functions 75
integer functions 74
macro functions 75
package 74

C source
lines merging 463

c_check machine function 354
c_dadd machine function 355
c_dcmp machine function 356
c_ddiv machine function 357
c_desck pointer 52
c_dmul machine function 358
c_dmula machine function 358
c_dneg machine function 359
c_dsub machine function 360
c_dtod machine function 361
Index 3

c_dtof machine function 362
c_dtoi machine function 363
c_dtol machine function 364
c_dtos machine function 365
c_eewbfb machine function 366
c_eewbfd machine function 367
c_eewrc machine function 368
c_eewrd machine function 369
c_eewrl machine function 370
c_eewrw machine function 371
c_eewstr machine function 372
c_entl machine function 373
c_ents machine function 374
c_fadd machine function 375
c_fcmp machine function 376
c_fdiv machine function 377
c_fgadd machine function 378
c_fgdiv machine function 379
c_fgmul machine function 380
c_fgmula machine function 380
c_fgsub machine function 381
c_fmul machine function 382
c_fmula machine function 382
c_fneg machine function 383
c_fsub machine function 384
c_ftod machine function 385
c_ftoi machine function 386
c_ftol machine function 387
c_idiv machine function 388
c_idiva machine function 388
c_idivb machine function 389
c_ilsh machine function 390
c_imod machine function 391
c_imoda machine function 391
c_imul machine function 392
c_imul10 machine function 394
c_imula machine function 392
c_imulb machine function 393
c_irsh machine function 395
c_itod machine function 396
c_itof machine function 397
c_jctab machine function 398

c_jltab machine function 399
c_jtab machine function 400
c_kenll machine function 401
c_kenls machine function 402
c_kenlt machine function 403
c_kenst machine function 404
c_kentl machine function 405
c_kents machine function 406
c_ladd machine function 407
c_land machine function 408
c_lcmp machine function 409
c_ldiv machine function 410
c_ldiva machine function 410
c_lgadd machine function 411
c_lgand machine function 412
c_lgdiv machine function 413
c_lgdiva machine function 413
c_lglsh machine function 414
c_lgmod machine function 415
c_lgmoda machine function 415
c_lgmul machine function 416
c_lgmula machine function 416
c_lgor machine function 417
c_lgrsh machine function 418
c_lgsub machine library 419
c_lgudv machine function 420
c_lgudva machine function 420
c_lgumd machine function 421
c_lgumda machine function 421
c_lgursh machine function 422
c_lgxor machine function 423
c_llsh machine function 424
c_lmod machine function 425
c_lmoda machine function 425
c_lmul machine function 426
c_lmula machine function 426
c_lneg machine function 427
c_lor machine function 428
c_lrsh machine function 429
c_lrzmp machine function 430
c_lsub machine function 431
c_ltod machine function 432
4 Index

c_ltof machine function 433
c_ludv machine function 434
c_ludva machine function 434
c_lumd machine function 435
c_lumda machine function 435
c_lursh machine function 436
c_lxor machine function 437
c_lzmp machine function 438
c_movstb machine function 439
c_movstw machine function 440
c_mspl machine function 441
c_mspo machine function 442
c_msps machine function 443
c_udiv machine function 444
c_uitod machine function 445
c_uitof machine function 446
c_ulcmp machine function 447
c_ultod machine function 448
c_ultof machine function 449
c_umod machine function 450
c_ursh machine function 451
c_wcalc machine function 452
c_wcalk machine function 453
c_wsavc machine function 454
c_wsavk machine function 455
calloc function 90
cbank utility 310
ceil function 91
char

promoted to int 70
signed 461
unsigned 461

checksum
-ck option 288
crc 288
functions 288
-ik option 288

clabs utility 315
clib utillity 318
clist directive 208, 223, 225, 226, 227,

228, 229, 230, 231, 232, 233
clst utility 306

cobj utility 321
code generator

compiler pass 462
error log file 463

code optimizer
compiler pass 465

code/data, no output 274
compilation model,selected 324
compiler

.bsct section,generate 71
ANSI checking 461
assembler 9
assembler option specification 67
C preprocessor and language parser 8
code generation option specification
68
code generator 8
code optimization 10
code optimizer 8
combination of options 351
command line options 66
configuration file 350
configuration file specification 68
configuration file,predefined option
69
create assembler file only 69
debug information,produce 70
default behavior 66
default configuration file 68
default file names 72
default operations 457
default options 66, 350
driver 4
error file name 73
error files path specification 67
error message 66
exclusive options 351
flags 6
generate error 327
generate error message 73
generate listing 73
header files 75
Index 5

include path definition 68
invocation 66
listing file 68
listing file path specification 68
log error file 68
name 66
object file path specification 68
optimizer option specification 69
options 66
options request 66
parser option specification 69
predefined option selection 69
preprocessed file only 69
produce assembly file 18
programmable option 350, 351
single precision option 70
specific options 4
specify options 67
temporary files path 69
type checking 459
user-defined preprocessor symbol 68
verbose mode 19, 69

const
data 35
qualifier 35

constant
in .text section 463
numeric 194
prefix character 194
string 194
string character 195
suffix character 195

convert
hex format 312
IEEE695 format 323

convert to 117
cos function 92
cosh function 93
cprd utility 304
cross-reference

information 188
table in listing 191

cv695 utility 323

D
data

16 bits pointer representation 63
32 bits pointer representation 63
automatic initialization 33
char representation 63
const type 35
const volatile 36
double representation 63
float representation 63
in eeprom space 41
in zero page 37
initalized 37
initialization 24
int representation 63
long integer representation 63
short int representation 63
volatile type 35

data object
automatic 304
scope 302
type 302

data representation
long integer 63

dc directive 209
dcb directive 210
debug information

adding 461
debug symbol

build table 290
table 302

debugging
data 302
support tools 301

debugging information
data object 302
extract 304
generate 302, 461
line number 302
print file 304
6 Index

print function 304
default

bitfield order 461
default placement

.bsct segment 284

.bss segment 284

.data segment 284

.text segment 284
definition 290
DEFs 290
descriptor

host to 275
div function 94
dlist directive 211
double

library 285
ds directive 212

E
eepcpy function 95
eepera function 96
eeprom

copy buffer 95
erase full space 96
fill character throughout buffer 97
location 13, 41

eepset function 97
else directive 213, 214, 217, 223, 225,

232
end directive 215
end5 directive 219
endc directive 225, 232
endif directive 213, 216, 217, 223
endm directive 218, 238, 241, 253
endr 249, 250
enum

size optimization 460
environment symbol 202
equ directive 220, 257
error

assembler log file 189
log file 273

message list 327
multiply defined symbol 193, 295
undefined symbol 291
undefined symbol in listing 190

error message 222
even directive 221
executable image 312
exit function 98
exp function 99
expression

evaluation 197
high 197
low 197
page 197

extra arithmetic unit 462

F
fabs function 100
fail directive 222
far function 52
file length restriction 302
fill

bank 310
filling byte 212, 221, 246
float

+sprec option 285
argument size 460
calculation 459
single precision library 285

floating point library
link 74

Floating Point Library Functions 75
floor function 101
fmod function 102
format

IEEE695 323
linker input/output 268

formatted argument 184, 185
frame pointer 56
free 103
free function 103
frexp function 104
Index 7

function
+fast option 40
@fast type qualifier 40
@nostack modifier 42
enforce prototype declaration 460
fast entry and exit 70
prototype declaration 460
recursive 297
return sequence 40
returning int 77

function arguments 304

G
generate

.bsct section 54

.bss section 54

.const section 54

.data section 54

.text section 54
hex record 275
listing file 190
object file 190

getchar function 105
gets function 106
group

option 270

H
header files 76
heap

alloc space 90
allocate space on 126
control 58
free space 103
location 60
pointer 58
reallocate space on 144
start 58
top 58

-help option 6

I
IEEE695

format converter 10
if directive 213, 217, 223
if directive 216
ifc directive 224
ifdef directive 225
ifeq directive 226
ifge directive 227
ifgt directive 228
ifle directive 229
iflt directive 230
ifnc directive 231
ifndef directive 232
ifne directive 233
include

file 278
file before 459
module 285
object file 278
path specification 459
specify path 459

include directive 203, 234
initialization

automatic 287
define option 274
descriptor 287
descriptor address 288
descriptor format 287
first segment 287
initialized segments 287
marker 275
startup routine 288

initialize storage for constants 209
inline

#pragma directive 46
assembly code 47
assembly instruction 46
block inside a function 47
block outside a function 47
with _asm function 47, 49
with pragma sequences 46
8 Index

inline code 40
input

format description 146
formatted read 146
formatted read from string 157

integer
library 286

interface information dump 323
interrupt

function in map 297
handler 50
hardware 50
reset 31
return sequence 50
software 50
vectors 50

isalnum function 107
isalpha function 108
iscntrl 109
isdigit function 110
isgraph function 111
islower function 112
isprint function 113
ispunct function 114
isqrt function 115
isspace function 116
isupper function 117
isxdigit function 118

L
label 193
labs function 119
ldexp function 120
ldiv function 121
librariy

building and maintaining 318
library

build and maintain 10
create 318
delete file 318
double precision 285
extract file 319

file 285
floating point 74
integer 74, 286
list file 319
load all files 318
load modules 271
machine 74
path specification 273
replace file 319
scanned 271
single precision 285
Standard ANSI 285
version 285

line number
information 463

link
command file 272
user command file 21

linker
character prefix,comment 271
build freestanding program 268
clnk 9
command file 270
command file example 298
command item 270
comment 271
global command line options 273
output file 269
physical memory 269

list directive 235
listing

cross reference 19
file location 27
file path specification 315
interspersed C and assembly file 18

lit directive 236
local

labels 49
local directive 194, 237
local variable

reorder 461
locate source file 306
Index 9

log function 122
log10 function 123
logarithm 122
long multiplication 416
longjmp function 124
lowercase 117

M
macro

argument 198
exit 200
expansion in listing 200
internal label 193
named syntax 199
numbered syntax 198

macro directive 238
main

function 297
malloc function 126
map

file description 297
modules section 297
produce information 273
segment section 297
stack usage section 297
symbols section 297

max function 127
maximum 127
MC68HC11

addressing mode 193
C family 463
direct addressing mode 193
instruction set 192
K family 463
K4 window registers,initialization 79
N4 family 353

memchr function 128
memcmp function 129
memcpy function 130
memmove function 131
memory

allocate new 145

location 43, 45
mapped I/O 43
private area 42
shared area 42
static models 57

memory model 297
memset function 132
messg directive 240
mexit directive 239, 241
min function 133
minimum 133
mlist directive 242
modf function 134
Motorola

old syntax 189, 203
S-Records format 313
standard S-record,generating 22
syntax 192

N
named syntax, example 239, 250
natural 122
new

segment control 270
start region 279

nolist directive 243
nopage directive 244
numbered syntax, example 239, 250

O
object

file location 27
image 267
module 268
module inspector 10
relocatable 321
relocatable file size 321
reorganization 310
size 321

object file
debug symbol,in 190

offset
10 Index

segment parameter 282
setting 283

offset directive 245
optimization

disable selectively 466
keep line 466
specific code 465

option
global 272

org directive 246
output

default format 313
file name 272
format specifiers 136
formatted argument to buffer 154
formatted arguments 136
formatted string,conversion specifi-
cations 136
listing line number 459
specify format 136

output to buffer 184, 185
override

data bias 312
text bias 312

P
page

address extension 197
value 197, 313

page directive 247
page header 261
paged

architecture 282
paginating output 307
parser

behaviour 459
compiler pass 458
error log file 459

plen directive 248
pointer

narrow 460
pow function 135

prefix
filename 461

preprocessor
#define 458
#include 458
run only 459

printf function 136
private name region

use 291
putchar function 141
puts function 142

R
rand function 143
range specification 307
realloc function 144
redirect output 307
REFs 290
region

name 270
private 279
public 279
use of private name 292

register
input-output 45

relative address 302
repeat directive 249
repeatl directive 250
restore directive 252
rexit directive 250, 253
ROM 43
rotate vector through angle 92
runtime startup

modifying 31

S
save directive 254
sbreak function 145
scanf function 146
section

curly braces,initiliazed data 39
definition 267
Index 11

name 39
parenthesis,code 39
pragma definition 38
pragma directive 39
square brackets, uninitialized data 39
user defined 38

section directive 255
sections

default 38
predefined 38
relocation 282

segment
bsct start address 277
bss start address 277
build new 285
control options 272, 274
data start address 277
definition 267
fill 274
follow current 274
maximum size 275
name 275
overlap checking 276, 283
overlapping 285
overlapping control 276
round up address 276
section overlap 277
shared data 275
space name 283
start,new 274
text start address 277
zero size 271

segmented architecture 282
separated address space 283
set directive 257
set new level 127, 133
setjmp 124
setjmp function 150
shared data 290
sin function 152
single precision option 286
sinh function 153

source files listing 306
source listings 306
space

for function 459
for variable 459

space name
definition 276

spc directive 258
sprintf function 154
sqrt function 155
square root

unsigned int compute 115
unsigned long int compute 125

srand function 156
sscanf function 157
stack

amount of memory 297
check overflow 462
frames 55
model in map 297
need 297
representation 56

stack pointer 56
set 32

stack space 103
standard ANSI libraries 285
static data 304
static model

private area 70
shared area 71

static models 42
static models,specification 463
strcat function 158
strchr function 159
strcmp function 160
strcpy function 161
strcspn function 162
strlen function 163
strncat function 164
strncmp function 165
strncpy function 166
strpbrk function 167
12 Index

strrchr function 168
strspn function 169
strstr function 170
strtod function 171
strtol function 172
strtoul function 173
suffix

assembly file 66
C file 66
input 316
output 316

suppress pagination 307
switch directive 259
symbol

__memory 32
__sbss 32
__stack 32
alias 292
define 270
define alias 280
define new 280
definition 280
export 295
logical end value,equal 280
logical start value,equal 280
physical end value,equal 281
physical start value,equal 281
size value,equal 281
sort alphabetically 273
sort by address 273
user-defined 459

symbol table
add 280
information 321
new 290

T
tab character setting 260
tabs directive 260
tan function 174
tanh function 175
task entries 297

test for 107
title directive 261
tolower function 176
toupper function 177
translate executable images 312

U
unreachable code

eliminate 11

V
va_arg macro 178
va_end function 180
va_start macro 182
variable

reorder local 461
variable length argument list 180, 182
virtual frame pointer 56
volatile

data 35
memory mapped control registers 35
qualifier 35
using keyword 35

vprintf function 184
vsprintf function 185

W
widen

argument 178
char 70
to int 178

window
set shift 273
size 276

window shift 282

X
xdef directive 262, 263
xref directive 262, 263
Index 13

Z
zero page

@dir qualifier 20
@dir type qualifier 37
maximum size 38
section 24, 37
set maximum size 38

zero page section 207
zpage

section 37
14 Index

	Preface
	Organization of this Manual

	Introduction
	Introduction
	Document Conventions
	Typewriter font
	Italics
	[Brackets]
	Conventions
	Command Line
	Flags

	Compiler Architecture
	Predefined Symbol
	Linking
	Programming Support Utilities
	Listings
	Optimizations
	Support for Bank Switching
	Support for ROMable Code
	Support for eeprom

	Tutorial Introduction
	Acia.c, Example file
	Default Compiler Operation

	Compiling and Linking
	Step 1: Compiling
	Step 2: Assembling
	Step 3: Linking
	Step 4: Generating S-Records file

	Linking Your Application
	Generating Automatic Data Initialization
	Specifying Command Line Options

	Programming Environments
	Introduction
	Modifying the Runtime Startup
	Description of Runtime Startup Code

	Initializing data in RAM
	The const and volatile Type Qualifiers
	Performing Input/Output in C
	Placing Data Objects in The Bss Section
	Placing Data Objects in The Zero Page Section
	Setting Zero Page Size

	Redefining Sections
	Fast Function Calls
	Placing Data Objects in the EEPROM Space
	Stack Usage
	Static Model 0
	Static Model 1
	Static Model 2
	Static Model 3

	Referencing Absolute Addresses
	Accessing Internal Registers
	Inserting Inline Assembly Instructions
	Inlining with pragmas
	Inlining with _asm
	Inlining Labels

	Writing Interrupt Handlers
	Placing Addresses in Interrupt Vectors
	Calling a Bank Switched Function
	Interfacing C to Assembly Language
	Register Usage
	Stack Model
	Stack Representation
	Static Models

	Heap Management Control with the C Compiler
	Modifying The Heap Location

	Data Representation

	Using The Compiler
	Invoking the Compiler
	Compiler Command Line Options

	File Naming Conventions
	Generating Listings
	Generating an Error File
	Return Status
	Examples
	C Library Support
	How C Library Functions are Packaged
	Inserting Assembler Code Directly
	Linking Libraries with Your Program
	Integer Library Functions
	Common Input/Output Functions
	Functions Implemented as Macros
	Including Header Files

	Descriptions of C Library Functions
	Generate inline assembly code
	Initialize K4 window registers
	Abort program execution
	Find absolute value
	Arccosine
	Arcsine
	Arctangent
	Arctangent of y/x
	Convert buffer to double
	Convert buffer to integer
	Convert buffer to long
	Verify the recorded checksum
	Allocate and clear space on the heap
	Round to next higher integer
	Cosine
	Hyperbolic cosine
	Divide with quotient and remainder
	Copy a buffer to an eeprom buffer
	Erase the full eeprom space
	Propagate fill character throughout eeprom buffer
	Exit program execution
	Exponential
	Find double absolute value
	Round to next lower integer
	Find double modulus
	Free space on the heap
	Extract fraction from exponent part
	Get character from input stream
	Get a text line from input stream
	Test for alphabetic or numeric character
	Test for alphabetic character
	Test for control character
	Test for digit
	Test for graphic character
	Test for lower-case character
	Test for printing character
	Test for punctuation character
	Integer square root
	Test for whitespace character
	Test for upper-case character
	Test for hexadecimal digit
	Find long absolute value
	Scale double exponent
	Long divide with quotient and remainder
	Natural logarithm
	Common logarithm
	Restore calling environment
	Long integer square root
	Allocate space on the heap
	Test for maximum
	Scan buffer for character
	Compare two buffers for lexical order
	Copy one buffer to another
	Copy one buffer to another
	Propagate fill character throughout buffer
	Test for minimum
	Extract fraction and integer from double
	Raise x to the y power
	Output formatted arguments to stdout
	Put a character to output stream
	Put a text line to output stream
	Generate pseudo-random number
	Reallocate space on the heap
	Allocate new memory
	Read formatted input
	Save calling environment
	Sin
	Hyperbolic sine
	Output arguments formatted to buffer
	Real square root
	Seed pseudo-random number generator
	Read formatted input from a string
	Concatenate strings
	Scan string for first occurrence of character
	Compare two strings for lexical order
	Copy one string to another
	Find the end of a span of characters in a set
	Find length of a string
	Concatenate strings of length n
	Compare two n length strings for lexical order
	Copy n length string
	Find occurrence in string of character in set
	Scan string for last occurrence of character
	Find the end of a span of characters not in set
	Scan string for first occurrence of string
	Convert buffer to double
	Convert buffer to long
	Convert buffer to unsigned long
	Tangent
	Hyperbolic tangent
	Convert character to lower-case if necessary
	Convert character to upper-case if necessary
	Get pointer to next argument in list
	Stop accessing values in an argument list
	Start accessing values in an argument list
	Output arguments formatted to stdout
	Output arguments formatted to buffer

	Using The Assembler
	Invoking ca6811
	Object File
	Listings
	Assembly Language Syntax
	Instructions
	Labels
	Temporary Labels
	Constants
	Expressions
	Macro Instructions
	Conditional Directives
	Sections
	Includes

	Branch Optimization
	Old Syntax
	C Style Directives
	Directives
	Align the next instruction on a given boundary
	Define the default base for numerical constants
	Switch to the predefined .bsct section.
	Turn listing of conditionally excluded code on or off.
	Allocate constant(s)
	Allocate constant block
	Turn listing of debug directives on or off.
	Allocate variable(s)
	Conditional assembly
	Conditional assembly
	Stop the assembly
	End conditional assembly
	End conditional assembly
	End macro definition
	End repeat section
	Give a permanent value to a symbol
	Assemble next byte at the next even address relative to the start of a section.
	Generate error message.
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Include text from another text file
	Turn on listing during assembly.
	Give a text equivalent to a symbol
	Create a new local block
	Define a macro
	Send a message out to STDOUT
	Terminate a macro definition
	Turn on or off listing of macro expansion.
	Turn off listing.
	Disable pagination in the listing file
	Creates absolute symbols
	Sets the location counter to an offset from the beginning of a section.
	Start a new page in the listing file
	Specify the number of lines per pages in the listing file
	Repeat a list of lines a number of times
	Repeat a list of lines a number of times
	Restore saved section
	Terminate a repeat definition
	Save section
	Define a new section
	Give a resetable value to a symbol
	Insert a number of blank lines before the next statement in the listing file.
	Place code into a section.
	Specify the number of spaces for a tab character in the listing file
	Define default header
	Declare a variable to be visible
	Declare symbol as being defined elsewhere

	Using The Linker
	Introduction
	Overview
	Linker Command File Processing
	Inserting comments in Linker commands

	Linker Options
	Global Command Line Options
	Segment Control Options
	Segment Grouping
	Linking Files on the Command line
	Example
	Include Option
	Example
	Private Region Options
	Symbol Definition Option
	Reserve Space Option

	Section Relocation
	Address Arithmetic
	Overlapping Control

	Setting Bias and Offset
	Setting the Bias
	Setting the Offset
	Using Default Placement

	Linking Objects
	Linking Library Objects
	Library Order

	Automatic Data Initialization
	Descriptor Format

	Checksum Computation
	Shared Data Handling
	DEFs and REFs
	Special Topics
	Private Name Regions
	Renaming Symbols
	Absolute Symbol Tables

	Description of The Map File
	Return Value
	Linker Command Line Examples

	Debugging Support
	Generating Debugging Information
	Generating Line Number Information
	Generating Data Object Information

	The cprd Utility
	Command Line Options
	Examples

	The clst utility
	Command Line Options

	Programming Support
	The cbank Utility
	Command Line Options
	Return Status
	Examples

	The chex Utility
	Command Line Options
	Return Status
	Examples

	The clabs Utility
	Command Line Options
	Return Status
	Examples

	The clib Utility
	Command Line Options
	Return Status
	Examples

	The cobj Utility
	Command Line Options
	Return Status
	Examples

	The cv695 Utility
	Command Line Options
	Return Status
	Examples

	Compiler Error Messages
	Parser (cp6811) Error Messages
	Code Generator (cg6811) Error Messages
	Assembler (ca6811) Error Messages
	Linker (clnk) Error Messages

	Modifying Compiler Operation
	The Configuration File
	Changing the Default Options
	Creating Your Own Options

	Example

	MC68HC11 Machine Library
	Check stack growth
	Add double to double
	Compare double with double
	Divide double by double
	Multiply double by double
	Negate a double
	Subtract double from double
	Copy a double into a double
	Convert double to float
	Convert double to integer
	Convert double into long integer
	Copy a double onto the stack
	Eeprom char bit field update
	Eeprom short bit field update
	Write a char int in eeprom
	Write a double in eeprom
	Write a long int in eeprom
	Write a short int in eeprom
	Move a structure in eeprom
	Function entry
	Function entry
	Add float to float
	Compare floats
	Divide float by float
	Add float to float in memory
	Divide float by float in memory
	Multiply float by float in memory
	Subtract float from float in memory
	Multiply float by float
	Negate a float
	Subtract float from float
	Convert float into double
	Convert float to integer
	Convert float into long integer
	Quotient of integer division
	Integer division by a byte constant
	Integer left shift
	Remainder of integer division
	Integer multiplication
	Integer multiplication by a byte constant
	Integer multiplication by 10
	Integer right shift
	Convert integer into double
	Convert integer into float
	Perform C switch statement on char
	Perform C switch statement on long
	Perform C switch statement
	Function entry with argument in d and 2,x
	Function entry with argument in d and 2,x
	Function entry with argument in b
	Function entry with argument in b
	Function entry with argument in d
	Function entry with argument in d
	Long integer addition
	Bitwise AND for long integers
	Long integer compare
	Quotient of long integer division
	Long addition
	Long bitwise AND
	Quotient of long integer division in memory
	Long shift left
	Remainder of long integer division in memory
	Long multiplication in memory
	Long bitwise OR
	Signed long shift right
	Long subtraction
	Quotient of unsigned long division in memory
	Remainder of long unsigned integer division
	Unsigned long shift right
	Long bitwise exclusive OR
	Long integer shift left
	Remainder of long integer division
	Multiply long integer by long integer
	Negate a long integer
	Bitwise OR with long integers
	Long integer right shift
	Long test against zero
	Long integer subtraction
	Convert long integer into double
	Convert long integer into float
	Quotient of unsigned long integer division
	Remainder of unsigned long integer division
	Unsigned long integer shift right
	Bitwise exclusive OR with long integers
	Compare a long integer to zero
	Copy a structure to another
	Copy a structure to another
	Move stack pointer forward
	Move stack pointer backward
	Move stack pointer forward
	Quotient of unsigned integer division
	Convert unsigned integer into double
	Convert unsigned integer into float
	Unsigned long integer compare
	Convert unsigned long integer into double
	Convert unsigned long integer into float
	Remainder of unsigned integer division
	Unsigned integer shift right
	Banked function call for the MC68HC11C0
	Banked function call for the MC68HC11K4
	Save bank descriptor for the MC68HC11C0
	Save bank descriptor for the MC68HC11K4

	Compiler Passes
	The cp6811 Parser
	Command Line Options
	Return Status
	Example

	The cg6811 Code Generator
	Command Line Options
	Return Status
	Example

	The co6811 Assembly Language Optimizer
	Command Line Options
	Disabling Optimization
	Return Status
	Example
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

